Title:
Automatic Generation of Proper Strut-and-Tie Model
Author(s):
Sebastián F. Vaquero and Raúl D. Bertero
Publication:
Structural Journal
Volume:
117
Issue:
6
Appears on pages(s):
81-92
Keywords:
automatic generation; corbel; deep beam; discontinuity region (D-region); structural concrete; strut-and-tie models; wall
DOI:
10.14359/51725905
Date:
11/1/2020
Abstract:
The strut-and-tie model (STM) for structural concrete design is still not widely used despite the considerable progress made. To promote its use, this paper presents a refined automatic generation of a proper STM that reduces the input required by the user and facilitates its implementation. This tool is intended to assist in decision-making for the design process, where engineering judgment
is relevant. Based on the results presented in the paper, including a comparison with other models recommended in the literature, it is concluded that an automatic determination of the STM can be applied for the analysis of plane reinforced concrete members of both simple and complex geometry.
Related References:
1. Chou, P. C., and Pagano, N. J., Elasticity – Tensor, Dyadic and Engineering Approaches, Dover Publications Inc., New York, 1992.
2. Gudmestad, O. T. G., and Coker, J. W. A., “The Sleipner Platform: An Efficient Gas and Condensate Installation,” SPE 18344, Society of Petroleum Engineers, European Petroleum Conference, London, UK, 1988, pp. 111-126.
3. Schlaich, J.; Schäfer, K.; and Jennewein, M., “Toward a Consistent Design of Structural Concrete,” PCI Journal, V. 32, No. 3, 1987, pp. 74-150. doi: 10.15554/pcij.05011987.74.150
4. Calladine, C. R., Plasticity for Engineers, Woodhead Publishing, Cambridge, UK, 2000.
5. Maute, K.; Schwarz, S.; and Ramm, E., “Adaptive Topology Optimization of Elastoplastic Structures,” Structural Optimization, V. 15, No. 2, 1998, pp. 81-91. doi: 10.1007/BF01278493
6. Ali, M. A., and White, R. N., “Automatic Generation of Truss Model for Optimal Design of Reinforced Concrete Structures,” ACI Structural Journal, V. 98, No. 4, July-Aug. 2001, pp. 431-442.
7. Guan, H.; Steven, G. P.; and Xie, Y. M., “Evolutionary Structural Optimisation Incorporating Tension and Compression Materials,” Advances in Structural Engineering, V. 2, No. 4, 1999, pp. 273-288. doi: 10.1177/136943329900200403
8. Biondini, F.; Bontempi, F.; and Malerba, P. G., “Stress Path Adapting Strut-and-Tie Models in Cracked and Uncracked R.C. Elements,” Structural Engineering and Mechanics, V. 12, No. 6, 2001, pp. 685-698. doi: 10.12989/sem.2001.12.6.685
9. Kostic, N., “Computer-Based Development of Stress Fields,” Symposium, Sixth International PhD Symposium in Civil Engineering, Zürich, Switzerland, 2006, 7 pp.
10. Kwak, H. G., and Noh, S. H., “Determination of Strut-and-Tie Models Using Evolutionary Structural Optimization,” Engineering Structures, V. 28, No. 10, 2006, pp. 1440-1449. doi: 10.1016/j.engstruct.2006.01.013
11. Leu, L. J.; Huang, C. W.; Chen, C. S.; and Liao, Y. P., “Strut-and-Tie Design Methodology for Three-Dimensional Reinforced Concrete Structures,” Journal of Structural Engineering, ASCE, V. 132, No. 6, 2006, pp. 929-938. doi: 10.1061/(ASCE)0733-9445(2006)132:6(929)
12. Bruggi, M., “Generating Strut-and-Tie Patterns for Reinforced Concrete Structures Using Topology Optimization,” Computers & Structures, V. 87, No. 23-24, 2009, pp. 1483-1495. doi: 10.1016/j.compstruc.2009.06.003
13. Bairán García, J. M., “Generación automática de esquemas de bielas y tensores considerando criterios constructivos,” Hormigón y Acero, V. 63, No. 264, Apr.-June 2012, pp. 67-79. [Automatic Generation of Strut-and-Ties Schemes, Adjusted for Constructability]
14. Herranz, J. P.; Santa María, H.; Gutierrez, S.; and Ridell, R., “Optimal Strut-and-Tie Models Using Full Homogenization Optimization Method,” ACI Structural Journal, V. 109, No. 5, Sept.-Oct. 2012, pp. 605-614.
15. Starcev-Curcin, A.; Raseta, A.; and Brujic, Z., “Automatic Generation of Planar RC Strut-and-Tie Models,” Architecture and Civil Engineering, V. 11, No. 1, 2013, pp. 1-12. doi: 10.2298/FUACE1301001S
16. Xie, Y. M., and Steven, G. P., Evolutionary Structural Optimization, Springer-Verlag, London, UK, 1977.
17. Ritter, W., “Die Bauweise Hennebique” [Hennebiques Construction Method], Schweizerischen Bauzeitung, 1899, Band XXXIII, No. 5, 6 und 7, Druck von Zürcher & Furrer, Zürich, Switzerland, pp. 41-61.
18. Mörsch, E., Concrete-Steel Construction, The Engineering News Publishing Company, London, UK, 1910.
19. Rüsch, H., “Über eine Erweiterung der Mörschschen Fachwerkanalogie” [An Extension of the Mörsch Truss Analogy], IABSE Congress Report, Band 7, Ein Dienst der ETH-Bibliothek, Zürich, Switzerland, 1964.
20. Leonhardt, F., “Reducing the Shear Reinforcement in Reinforced Concrete Beams and Slabs,” Magazine of Concrete Research, V. 17, No. 53, 1965, pp. 187-198. doi: 10.1680/macr.1965.17.53.187
21. Grob, J., “Traglast von Stäben mit dünnwandigen offenen Querschnitt” [Ultimate Strength of Beams with Thin Walled Open Cross-Sections], Institut für Baustatik und Konstruktion, ETH-Zürich, Zürich, Switzerland, 1975, Bericht No. 56.
22. Lampert, P., “Postcracking Stiffness of Reinforced Concrete Beams in Torsion and Bending,” Analysis of Structural Systems for Torsion, SP-35, American Concrete Institute, Farmington Hills, MI, 1973, pp. 385-433.
23. Mitchell, D., and Collins, M. P., “Diagonal Compression Field Theory-A Rational Model for Structural Concrete in Pure Torsion,” ACI Journal Proceedings, V. 71, No. 8, Aug. 1974, pp. 396-408.
24. Lüchinger, P., “Bruchwiderstand von Kastenträgern aus Stahlbeton unter Torsion, Biegung und Querkraft” [Ultimate Strength of RC Box Girders under Torsion, Bending and Shear], Institut für Baustatik und Konstruktion, ETH-Zürich, Zürich, Switzerland, 1977, Bericht No. 69.
25. Müller, P., “Plastische Berechnung von Stahlbeton und –balken” [Plastic Calculation of RC Beams], Institut für Baustatik und Konstruktion, ETH-Zürich, Zürich, Switzerland, 1978, Bericht Nr. 83.
26. Nielsen, M.; Braestrup, N.; Jensen, B.; and Bach, F., “Concrete Plasticity: Beam Shear – Shear in Joints – Punching Shear,” Danish Society for Structural Science and Engineering, Special Publication, Lyngby, Denmark, 1978, 129 pp.
27. Hsu, T. T. C., “Shear Flow Zone in Torsion of Reinforced Concrete,” Journal of Structural Engineering, ASCE, V. 116, No. 11, 1990, pp. 3206-3226. doi: 10.1061/(ASCE)0733-9445(1990)116:11(3206)
28. Hsu, T. T. C., and Zhu, R. R. H., “Softened Membrane Model for Reinforced Concrete Elements in Shear,” ACI Structural Journal, V. 99, No. 4, July-Aug. 2002, pp. 460-469.
29. Greene, G. Jr., and Belarbi, A., “Model for Reinforced Concrete Members under Torsion, Bending, and Shear. I: Theory,” Journal of Engineering Mechanics, ASCE, V. 135, No. 9, 2009, pp. 961-969. doi: 10.1061/(ASCE)0733-9399(2009)135:9(961)
30. Persson, P., and Strang, G., “A Simple Mesh Generator in MATLAB,” SIAM Review, V. 46, 2004.
31. Galetzka, M., and Glauner, P., “A Simple and Correct Even-Odd Algorithm for the Point-in-Polygon Problem for Complex Polygons,” Proceedings, Twelfth International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), Volume 1: GRAPP, Porto, Portugal, 2017.
32. Southwell, R. V., “Castigliano’s Principle of Minimum Strain-Energy,” Proceedings of the Royal Society of London. Series A, V. 154, No. 881, 1936
33. Uribe, C. M., and Alcocer, S., “Example 1a: Deep Beam Design in Accordance with ACI 318-2002,” Examples for the Design of Structural Concrete with Strut-and-Ties Models, SP-208, K.-H. Reineck, ed., American Concrete Institute, Farmington Hills, MI, 2002, pp. 65-80.
34. Wight, J. K., and Parra-Montesinos, G., “Strut and Tie Model for Deep Beam Design,” Concrete International, V. 25, No. 5, May 2003, pp. 63-70.
35. Precast/Prestressed Concrete Institute, “PCI Design Handbook,” seventh edition, PCI, Chicago IL, 2010.
36. Novak, L. C., and Sprenger, H., “Example 4: Deep Beam with Opening,” Examples for the Design of Structural Concrete with Strut-and-Ties Models, SP-208, K.-H. Reineck, ed., American Concrete Institute, Farmington Hills, MI, 2002, pp. 129-143.
37. Campione, G., and Minafó, G., “Experimental Investigation on Compressive Behaviour of Bottle-Shaped Struts,” ACI Structural Journal, V. 108, No. 3, May-June 2011, pp. 294-303.
38. Ruiz, M. F., and Muttoni, A., “On Development of Suitable Stress Fields for Structural Concrete,” ACI Structural Journal, V. 104, No. 4, July-Aug. 2007, pp. 495-502.