Title:
Compressive Behavior of Thin Rectangular Boundary Elements
Author(s):
Carlos A. Arteta and Jack P. Moehle
Publication:
Structural Journal
Volume:
120
Issue:
2
Appears on pages(s):
171-189
Keywords:
boundary element; buckling; compression test; crossties; rectangular prism; special shear wall; strain capacity
DOI:
10.14359/51737236
Date:
3/1/2023
Abstract:
A laboratory test program studied the axial compressive behavior of rectangular prisms whose geometry modeled the rectangular boundary elements of thin shear walls. A primary test variable was the arrangement of longitudinal and transverse reinforcement. The prisms experienced compressive failure involving concrete crushing and longitudinal reinforcement buckling that was concentrated
along a height on the order of two to three times the prism
thickness. Asymmetric spalling typically resulted in eccentric
forces and led to out-of-plane instability. The localization of the
compressive failures leads to the conclusion that flexural response of thin walls satisfying current detailing practices will be relatively brittle if failure is controlled by crushing of the boundary elements. Axial strain capacities are reported for regions within the specimens where plasticity concentrates.
Related References:
ACI Committee 318, 2011, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11),” American Concrete Institute, Farmington Hills, MI, 473 pp.
ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 503 pp.
ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 624 pp.
Arteta, C. A., 2015, “Seismic Response Assessment of Thin Boundary Elements of Special Concrete Shear Walls,” PhD thesis, University of California, Berkeley, Berkeley, CA, https://search.proquest.com/docview/2031098506?accountid=41515.
ASTM A706/A706M-9b, 2009, “Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA, 6 pp.
ASTM C39/C39M-12a, 2012, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 7 pp.
ASTM C469/C469M-10, 2010, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” ASTM International, West Conshohocken, PA, 5 pp.
Bing, L.; Park, R.; and Tanaka, H., 2001, “Stress-Strain Behavior of High-Strength Concrete Confined by Ultra-High- and Normal-Strength Transverse Reinforcements,” ACI Structural Journal, V. 98, No. 3, May-June, pp. 395-406.
Chai, Y. H., and Elayer, D. T., 1999, “Lateral Stability of Reinforced Concrete Columns under Axial Reversed Cyclic Tension and Compression,” ACI Structural Journal, V. 96, No. 5, Sept.-Oct., pp. 780-789. doi: 10.14359/732
Chu, T. C.; Ranson, W. F.; and Sutton, M. A., 1985, “Applications of Digital-Image-Correlation Techniques to Experimental Mechanics,” Experimental Mechanics, V. 25, No. 3, pp. 232-244. doi: 10.1007/BF02325092
Coleman, J., and Spacone, E., 2001, “Localization Issues in Force-Based Frame Elements,” Journal of Structural Engineering, ASCE, V. 127, No. 11, pp. 1257-1265. doi: 10.1061/(ASCE)0733-9445(2001)127:11(1257)
Comité-AIS-100, 2010, “Reglamento Colombiano de Construcción Sismo Resistente (NSR-10),” Asociación Colombiana de Ingeniería Sísmica, Bogotá, Colombia.
Creagh, A.; Acevedo, C.; Moehle, J. P.; Hassan, W.; and Tanyeri, A. C., 2010, “Seismic Performance of Concrete Special Boundary Element,” https://nees.org/education/for-students/reu-program/reu-archive website.
Instituto Nacional de Normalización, 2008, “Hormigón armado – Requisitos de diseño y cálculo,” Chile.
Légeron, F., and Paultre, P., 2003, “Uniaxial Confinement Model for Normal- and High-Strength Concrete Columns,” Journal of Structural Engineering, ASCE, V. 129, No. 2, pp. 241-252. doi: 10.1061/(ASCE)0733-9445(2003)129:2(241)
Mander, J. B.; Priestley, M. J. N.; and Park, R., 1988a, “Observed Stress-Strain Behavior of Confined Concrete,” Journal of Structural Engineering, ASCE, V. 114, No. 8, pp. 1827-1849. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1827)
Mander, J. B.; Priestley, M. J. N.; and Park, R., 1988b, “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, V. 114, No. 8, pp. 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
Manrique, M. A.; Bertero, V. V.; and Popov, E. P., 1979, “Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement,” Report No. UCB/EERC-79/05, Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, CA, 103 pp.
Markeset, G., and Hillerborg, A., 1995, “Softening of Concrete in Compression - Localization and Size Effects,” Cement and Concrete Research, V. 25, No. 4, pp. 702-708. doi: 10.1016/0008-8846(95)00059-L
Massone, L. M.; Polanco, P.; and Herrera, P., 2014, “Experimental and Analytical Response of RC Wall Boundary Elements,” 10th US National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, AK.
MINVU, 2011, “Decreto 60 - Aprueba reglamento que fija los requisitos de diseño y cálculo para el hormigón armado y deroga,” Ministerio de Vivienda y Urbanismo, Decreto No 118, de 2010. Diario Oficial de la República de Chile, Santiago, Chile, Nov. 2, 2011.
Moehle, J. P., 1992, “Displacement‐Based Design of RC Structures Subjected to Earthquakes,” Earthquake Spectra, V. 8, No. 3, pp. 403-428. doi: 10.1193/1.1585688
Moehle, J. P., 2014, Seismic Design of Reinforced Concrete Buildings, McGraw-Hill, New York.
Moehle, J. P., and Bavanagh, T., 1985, “Confinement Effectiveness of Crossties in RC,” Journal of Structural Engineering, ASCE, V. 111, No. 10, pp. 2105-2120. doi: 10.1061/(ASCE)0733-9445(1985)111:10(2105)
Monti, G., and Nuti, C., 1992, “Nonlinear Cyclic Behavior of Reinforcing Bars Including Buckling,” Journal of Structural Engineering, ASCE, V. 118, No. 12, pp. 3268-3284. doi: 10.1061/(ASCE)0733-9445(1992)118:12(3268)
Pantazopoulou, S. J., 1998, “Detailing for Reinforcement Stability in RC Members,” Journal of Structural Engineering, ASCE, V. 124, No. 6, pp. 623-632. doi: 10.1061/(ASCE)0733-9445(1998)124:6(623)
Park, R.; Priestley, M. J. N.; and Gill, W. D., 1982, “Ductility of Square-Confined Concrete Columns,” Journal of the Structural Division, V. 108, No. 4, pp. 929-950. doi: 10.1061/JSDEAG.0005933
Parra, P. F., and Moehle, J. P., 2017, “Stability of Slender Wall Boundaries Subjected to Earthquake Loading,” ACI Structural Journal, V. 114, No. 6, Nov.-Dec., pp. 1627-1636. doi: 10.14359/51700836
Priestley, M. J. N.; Calvi, G. M.; and Kowalsky, M. J., 2007, Displacement Based Seismic Design of Structures. IUSS Press, Pavia, Italy.
Razvi, S. R., and Saatcioglu, M., 1999, “Confinement Model for High-Strength Concrete,” Journal of Structural Engineering, ASCE, V. 125, No. 3, pp. 281-289. doi: 10.1061/(ASCE)0733-9445(1999)125:3(281)
Richart, F. E.; Brandtzaeg, A.; and Brown, R. L., 1929, The Failure of Plain and Spirally Reinforced Concrete in Compression, Urbana, IL.
Roy, H. E. H., and Sozen, M. A., 1964, “Ductility of Concrete,” Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, pp. 213-224.
Scott, B. D.; Park, R.; and Priestley, M. J. N., 1982, “Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates,” ACI Journal Proceedings, V. 79, No. 1, Jan., pp. 13-27. doi: 10.14359/10875
Scott, M. H., and Fenves, G. L., 2006, “Plastic Hinge Integration Methods for Force-Based Beam-Column Elements,” Journal of Structural Engineering, ASCE, V. 132, No. 2, pp. 244-252. doi: 10.1061/(ASCE)0733-9445(2006)132:2(244)
Segura, C. L., and Wallace, J. W., 2018, “Impact of Geometry and Detailing on Drift Capacity of Slender Walls,” ACI Structural Journal, V. 115, No. 3, May, pp. 885-895. doi: 10.14359/51702046
Sheikh, S. A., and Uzumeri, S. M., 1980, “Strength and Ductility of Tied Concrete Columns,” Journal of the Structural Division, V. 106, No. 5, pp. 1079-1102. doi: 10.1061/JSDEAG.0005416
Sritharan, S.; Beyer, K.; Henry, R. S.; Chai, Y. H.; Kowalsky, M.; and Bull, D., 2014, “Understanding Poor Seismic Performance of Concrete Walls and Design Implications,” Earthquake Spectra, V. 30, No. 1, pp. 307-334. doi: 10.1193/021713EQS036M
Standards New Zealand, 2006, “Concrete Structures Standard (NZS 3101:2006),” Wellington, New Zealand, 324 pp.
Takahashi, S.; Yoshida, K.; Ichinose, T.; Sanada, Y.; Matsumoto, K.; Fukuyama, H.; and Suwada, H., 2013, “Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement,” ACI Structural Journal, V. 110, No. 1, Jan.-Feb., pp. 95-104. doi: 10.14359/51684333
Taleb, R.; Tani, M.; and Kono, S., 2016, “Performance of Confined Boundary Regions of RC Walls under Cyclic Reversal Loadings,” Journal of Advanced Concrete Technology, V. 14, No. 4, pp. 108-124. doi: 10.3151/jact.14.108
Wallace, J. W.; Massone, L. M.; Bonelli, P.; Dragovich, J.; Lagos, R.; Luders, C.; and Moehle, J. P., 2012, “Damage and Implications for Seismic Design of RC Structural Wall Buildings,” Earthquake Spectra, V. 28, pp. 281-299. doi: 10.1193/1.4000047
Wallace, J. W., and Orakcal, K., 2002, “ACI 318-99 Provisions for Seismic Design of Structural Walls,” ACI Structural Journal, V. 99, No. 4, July-Aug., pp. 499-508. doi: 10.14359/12119
Welt, T. S.; Massone, L. M.; LaFave, J. M.; Lehman, D. E.; McCabe, S. L.; and Polanco, P., 2017, “Confinement Behavior of Rectangular Reinforced Concrete Prisms Simulating Wall Boundary Elements,” Journal of Structural Engineering, ASCE, V. 143, No. 4, Apr., doi: 10.1061/(ASCE)St.1943-541x.000168210.1061/(ASCE)St.1943-541x.0001682.