ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 12 Abstracts search results
Document:
SP112-09
Date:
January 1, 1989
Author(s):
C. J. Turkstra, P. Zoltanetzky, Jr., H. P. Lim, and C. Gordon
Publication:
Symposium Papers
Volume:
112
Abstract:
Presents a comparison of 28 day concrete strength as measured by field probe penetration tests and standard laboratory cylinders. Over a period of 11 months, 318 matched sets of tests were performed on 4000-psi concrete at four major projects. Primary field variables include the project location, operators, test guns, and the element type on which the field tests were made. Corrections to account for temperature variations are considered. Results include statistical analysis of the effects of test parameters and the correlation between field and laboratory results. Based on standard statistical tests, it is concluded that the variability of field probe results is similar to that of the corresponding laboratory cylinder tests. Results did not depend significantly on operators or the particular equipment used. However, results did depend significantly on the type of structural element tested and on the range setting of the firing gun. It is concluded that the calibration charts provided with the equipment should be reviewed.
DOI:
10.14359/3736
SP112-01
M. Sansalone and N. J. Carino
A nondestructive test method has been developed for locating defects in concrete. The technique is referred to as the impact-echo method and is based on monitoring surface displacements resulting from the interactions of transient stress waves with internal discontinuities. Paper describes the technique and presents results of laboratory studies designed to evaluate the capabilities of the method. These laboratory studies were carried out on 500 mm thick slabs that contained a variety of artificial flaws embedded at known locations. Frequency analysis of recorded time-domain waveforms is explained and shown to be a quick and simple signal processing technique. Finally, results are presented from a field study in which the impact-echo method was used to investigate a 150 mm thick slab believed to contain voids.
10.14359/3688
SP112-04
M. Ohtsu
On the basis of the acoustic emission (AE) measuring technique, a diagnostic method for nondestructive evaluation of cracks in concrete is proposed. The diagnostics consist of a mechanical criterion of crack initiation, a quantitative waveform analysis of AE, the evaluation of deterioration by a test of core specimens, and the ultrasonic spectroscopic investigation of cracked members. Results of basic studies on these methods are summarized. Results of basic studies confirm the feasibility and the usefulness of the proposed method as diagnostics of cracks in concrete structures.
10.14359/2840
SP112
Editor: H.S. Lew
SP112 Nondestructive Testing of Concrete has been especially prepared to present, examine, and promote the use of nondestructive testing techniques in concrete construction. Providing the latest information on the development and applications of nondestructive testing techniques, this collection of 11 papers will be of interest to anyone working in the field of concrete.
10.14359/14145
SP112-06
C. H. Yun, K. R. Choi, S. Y. Kim, and Y. C. Song
Presents an investigation to determine the within-test variability of various nondestructive test methods (NDT) and the correlation between NDT test results and the corresponding compressive strength of cores. The size effects of coarse aggregate on the variability and correlation were also evaluated. The NDT test methods evaluated in the test series include rebound hammer, pulse velocity, probe penetration, pullout, and CAPO (cut and pullout). Companion tests of field-cured standard cylinders and cores were also made at the ages when the NDT tests were made. Results show that the within-test variability of the in situ tests reported (except the pulse velocity test) is two to five times higher than that of the corresponding standard compression test and is affected significantly by the amount of coarse aggregate and its size. There is a good relationship between the results of in situ tests and the compressive strength. In general, the highest degree of correlation is for the pullout test followed by that for the CAPO (cut and pullout) test and rebound test, probe penetration test, and pulse velocity test.
10.14359/3706
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer