ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 14 Abstracts search results
Document:
SP118-06
Date:
January 1, 1990
Author(s):
L. Nobile
Publication:
Symposium Papers
Volume:
118
Abstract:
Focuses on the formulation of a self-consistent model for a compressed concrete containing randomly distributed flat microcracks. A general formulation of the constitutive law for such material is obtained, finding the overall mechanical response to be strongly nonlinear in the region near the maximum in the stress-strain curve.
DOI:
10.14359/2942
SP118-12
T. Shioya, M. Iguro, Y. Nojiri, H. Akiyama, and T. Okada
Experimental and theoretical studies on shear strength of large reinforced concrete beams are presented. The shear strength of a reinforced concrete beam without shear reinforcement gradually decreases as an effective depth d of a beam increases, and is generally called the size effect. From the result of the experiment on large beams, the size effect of a beam exists even for a beam deeper than 100 cm which had been outside of the scope of past experiments, and the size effect at d ò 100 cm may be considered to be inversely proportional to the fourth root of the effective depth. According to the result of a nonlinear finite element analysis, the size effect on flexural tensile strength of concrete and shear transfer across crack surfaces must be considered in estimating the shear strength of a large reinforced concrete beam.
10.14359/2978
SP118-13
Arne Hillerborg
The stress-deformation relation now generally accepted for tensile fracture, i.e., with the descending branch described by means of a stress-displacement relation in a localized band, has been applied to the compressive stresses in a bent, reinforced beam. The displacement in this band is averaged over a length, which is proportional to the depth of the compression zone. The resulting average stress-strain relation, which is strongly size-dependent, is used for the analyses of the stresses in a rectangular beam section, and for the corresponding moment-curvature relationship. The results differ appreciably from those from conventional assumptions. The new approach shows a better agreement with test results than the conventional approach. Further test comparisons are, however, recommended. The new approach may form the basis of changed design assumptions, particularly for high-strength concrete.
10.14359/2983
SP118-02
R. J. Ward, K. Yamanobe, V. C. Li, and S. Backer
Results of notched beam, direct tension, splitting tension, compression, shear beam, and flexural tests on plain mortar and on mortar reinforced with different volume fractions of short acrylic fibers are reported. An indirect J-integral technique is employed to determine the tension-softening curve and thus the tensile strength, the fracture energy, and the critical crack opening from the notched beam test results. As the volume fraction of fibers is increased, the strength in shear and flexure, the fracture energy, and the critical crack opening all increase, the tensile strength remains essentially constant, and the compressive strength shows some reduction. The characteristic length lch is used as a material property to characterize the post-peak tensile behavior. The shear and flexural strengths are related to the normalized dimension d/lch, and good agreement between the experimental results and theoretical predictions of decreasing strength with increasing d/lch is found.
10.14359/2878
SP118-01
Victor c. Li
Reviews the tensile failure of concrete structures subjected to a variety of practical loading. Attention is focused on the propensity of fracture failure of concrete structures and the fracture properties of cementitious materials. The relevance of fracture mechanics to modern concrete design code is highlighted.
10.14359/2908
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer