ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 23 Abstracts search results

Document: 

SP120

Date: 

June 1, 1990

Author(s):

Editors: Antoine Naaman and John Breen

Publication:

Symposium Papers

Volume:

120

Abstract:

SP120 External prestressing--that is, the use of unbonded prestressing tendons outside the concrete section of a structural concrete member--offers substantial economic savings and a dramatic increase in construction speed, making it an extremely attractive option for the construction of new concrete structures, particularly bridges. It is also a logical choice for the rehabilitation and strengthening of many existing structures. ACI's symposium volume, External prestressing in Bridges, provides the last word on this important technological development Based on experience in both the U.S. and Europe, the book addresses: *The state of the art, *Technologies for construction, *Applications in new construction and rehabilitation, *Testing and experimental observations, *Analysis and design considerations. Covering practical construction information as well as analysis and design, this is required reading for anyone involved in building bridges.

DOI:

10.14359/14153


Document: 

SP120-16

Date: 

June 1, 1990

Author(s):

Antoine E. Naaman

Publication:

Symposium Papers

Volume:

120

Abstract:

A simple methodology for the solution of beams prestressed or partially prestressed with external or unbonded tendons in the linear elastic cracked and uncracked range of behavior is described. It leads to equations allowing the computation of stresses in the concrete section, the tensile reinforcing steel, the compression reinforcing steel, and the prestressing steel. In particular, it is shown that the stress in unbonded tendons is a function of the applied loading, the steel profile, and the ratio of the crack width (or crack band width) to the span. These factors can all be accounted for through the use of a strain reduction coefficient ê for the uncracked range of behavior and a similar coefficient êc for the cracked range of behavior. It is shown that, when the strain reduction coefficients ê and êc are taken equal to unity, the solutions developed here revert to the solutions developed earlier for partially prestressed beams with bonded tendons.

DOI:

10.14359/2765


Document: 

SP120-21

Date: 

June 1, 1990

Author(s):

Eilhard WoelfelI

Publication:

Symposium Papers

Volume:

120

Abstract:

In the near future, prestressed concrete structures will be designed in Europe according to Eurocode 2 (EC 2). The EC 2 principles governing the design of structures with bonded tendons and with external tendons are given in this paper, and a comparison is made between the structural behavior of the two different types of structures. It is shown that the reliability of both is comparable if the characteristic strain due to prestressing is introduced in the calculations.

DOI:

10.14359/2865


Document: 

SP120-18

Date: 

June 1, 1990

Author(s):

J. EiblI

Publication:

Symposium Papers

Volume:

120

Abstract:

Experience gained in the design of several externally prestressed bridges is reported. New cables especially developed by contractors are discussed. Also, the main experimental results gained at the author's institute for reinforced concrete are given.

DOI:

10.14359/3286


Document: 

SP120-17

Date: 

June 1, 1990

Author(s):

J. Muller and Y. Gauthier

Publication:

Symposium Papers

Volume:

120

Abstract:

The concept of precast segmental construction with external tendons has been developed extensively since 1978, starting with the construction of the Long Key Bridge (Florida). Since this first experience, many other structures (more than 5,500,000 ftý of deck) have been designed and successfully built using the same method. The performance of all bridges now in operation has been excellent. However, some questions were raised in the minds of engineers, unfamiliar with the method, regarding the behavior of structures prestressed with external tendons beyond the range of design loads (serviceability limit state). Because continuous reinforcement is not usually provided across the match cast joints between segments, concern was expressed that adequate ultimate behavior and sufficient strength could not be obtained. To provide a satisfactory answer to these legitimate questions, a special computer program (DEFLECT) has been developed to analyze accurately the response of the structures prestressed by external tendons. Moreover, several tests are available to confirm the behavior of such structures while verifying the validity of the DEFLECT computer program. This design tool has been used to predict the structural behavior of simply supported and continuous structures beyond joint opening, up to ultimate capacity of the girders with and without thermal loads. Several different prestressing methods have been analyzed with different bonding conditions at the point of deviation of the external tendons. It was found systematically that structures prestressed with either internal or external tendons behave essentially the same way at all loading stages up to ultimate.

DOI:

10.14359/3281


12345

Results Per Page