International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 39 Abstracts search results

Document: 

SP121

Date: 

November 1, 1990

Author(s):

Weston T. Hester

Publication:

Symposium Papers

Volume:

121

Abstract:

SP-121 The Second International Symposium on the Utilization of High Strength Concrete was held in Berkeley, CA, May 1990. A substantial amount of research work and project construction with high strength concrete was completed since the last Symposium. Recent findings were presented and discussed.

DOI:

10.14359/14154


Document: 

SP121-29

Date: 

November 1, 1990

Author(s):

Norio Marushima, Kenji Kuroha, and Kuniyiki Tomatsuri

Publication:

Symposium Papers

Volume:

121

Abstract:

High-strength concrete tends to mean small water-cement rations, implying poor workability. This tendency becomes more pronounced when much higher strength is required, and conventional concreting processes cannot sufficiently guarantee high-quality work. In current construction work, therefore, maximum use has been made of precast concrete (guaranteeing quality and minimizing the need for concrete cast in situ) and a new high-performance, air-entraining, and plasticizing admixture has been used for the necessary in situ concrete. The concrete prepared in this way exhibited a mix strength of 55 MPa at best. This value, in itself, is by no means high, but meaningful efforts to establish methods of concreting that insure still greater strength have been made. This construction work has demonstrated that combining the reinforced concrete (RC) layer method (which uses a large proportion of precast members) with high-strength concrete obtained from mixing with the new high-performance, air-entraining, plasticizing admixture is an extremely effective way to secure quality structures. Since this admixture is a novel product, the physical properties of the resulting concrete have been thoroughly checked to supplement the results of laboratory experiments and preliminary field tests.

DOI:

10.14359/3758


Document: 

SP121-12

Date: 

November 1, 1990

Author(s):

L. Bjerkeli, A. Tomaszewicz, and J. J. Jensen

Publication:

Symposium Papers

Volume:

121

Abstract:

Paper summarizes results obtained as part of a recent research program on high-strength concrete (HSC). In this research, normal density concrete (mean cube strength of 65 to 115 MPa) and lightweight aggregate concrete (mean cube strength of 60 to 90 MPa)

DOI:

10.14359/2844


Document: 

SP121-13

Date: 

November 1, 1990

Author(s):

S.W. Shin, M. Kamara, and S. K. Ghosh

Publication:

Symposium Papers

Volume:

121

Abstract:

The flexural ductility of ultra-high-strength concrete members (concrete strength ranging up to 15 ksi or 103.4 MPa) under monotonic as well as reversed cyclic loading is experimentally investigated. The investigation under reversed cyclic loading included an examination of the hysteretic behavior of ultra-high-strength concrete members. The applicability of the equivalent rectangular compression concrete stress block of the ACI Building Code to the prediction of flexural strength of ultra-high-strength concrete members is also investigated.

DOI:

10.14359/2850


Document: 

SP121-35

Date: 

November 1, 1990

Author(s):

Erhard G. F. Chorinsky

Publication:

Symposium Papers

Volume:

121

Abstract:

Concrete repair materials applied in thin layers often fail under severe weathering conditions and high loading due to sensitivity in the bonding area to water, alkalinity, and mechanical strain. High-strength concrete, with its dense cement matrix, makes it even more difficult to connect repair materials to the old concrete. More than 15 years of experience in development and use of different systems for repair of high-strength concrete has shown that cementitious mortars with modification by high amounts of superplasticizers perform best. Practical aspects of application are shown on a large project carried out on a high-strength concrete floor in an airplane hangar. Cementitious repair systems are suitable for any kind of high-strength concrete repair where adequate surface preparation and the application of a special cementitious bridging agent is provided, but have to be adopted to the individual job site conditions. Shrinkage compensation techniques and sophisticated curing methods have to be used to achieve improved results with respect to drying shrinkage cracking. The durability of high-strength floor repairs with new technologies, used on a large scale in Europe, has proved to be reliable even under severe service conditions.

DOI:

10.14359/3444


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer