ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 39 Abstracts search results
Document:
SP121-38
Date:
November 1, 1990
Author(s):
Kaare K. B. Dahl
Publication:
Symposium Papers
Volume:
121
Abstract:
Presents the results of an investigation undertaken at the Technical University of Denmark to determine the parameters that affect the ultimate load capacity of a concrete structure subjected to concentrated loads originating from reinforcement bars bent 90 deg. The following parameters have been found to have a decisive influence on the ultimate load capacity of the concrete bar: bar diameter, internal height of the specimen, side concrete cover, and concrete compressive strength. The results show that the relative load-carrying capacity of the concrete åc / fc decreases for increasing concrete compressive strength. However, the use of high-strength concrete (HSC) still results in an increase in the absolute load-carrying capacity of the concrete whencompared to normal strength concrete (NSC).
DOI:
10.14359/2870
SP121
Weston T. Hester
SP-121 The Second International Symposium on the Utilization of High Strength Concrete was held in Berkeley, CA, May 1990. A substantial amount of research work and project construction with high strength concrete was completed since the last Symposium. Recent findings were presented and discussed.
10.14359/14154
SP121-02
H. Aoyama, T. Murota, H. Hiraishi, and S. Bessho
A National Project lasting five years has been promoted by the Ministry of Construction of Japan since 1988 to develop super high-rise reinforced concrete buildings in seismic zones. The strength of concrete and reinforcing steel bars ranges from 30 to 120 MPa (4.3 to 17.4 ksi) and from 400 to 1200 MPa (58 to 174 ksi), respectively. The following is investigated in the Project: 1) production, quality control, and placement of high-strength concrete; 2) production of high-strength steel bars; 3) mechanical properties of high-strength concrete and steel bars; 4) behavior of members and subassemblages; and 5) structural design methodology.
10.14359/3638
SP121-24
Ivan Ramalho De Almeida
Evaluates cracking resistance for concretes with compressive strengths between 60 and 110 MPa, including superplasticizers and/or condensed silica fume. Two types of concrete ring with 81 cm external diameter are tested and their shrinkage is measured over time. The first ring is cast around an aluminum ring, shrinkage-induced strain is measured, and the strains are subsequently transformed into stresses based on the theory of elasticity and knowledge of the elastic constants of aluminum. After some days, the ring breaks and the rupture stress by restrained deformation of the concrete is determined. A second concrete ring is cast, but without the internal metal ring. For this ring, measurement is made of the free shrinkage of the concrete. The value of the stresses and strains, in conjunction with the compressive and flexural strength, creep, and coefficient of hygrometric permeability (measured in other test specimens) are measured. Based upon available test data, the superplasticizer raised the mechanical strength but reduced the cracking strength of the concrete. The joint introduction of the superplasticizer, together with condensed silica fume, raised the mechanical strength of the concrete even further, but also increased its cracking resistance. To explain the test results, it is necessary to resort to the coefficients of hygrometric permeability and stress gradients, responsible for a reduction in the rupture stress of the concrete, which is higher in the first case than in the second.
10.14359/3733
SP121-25
G. Petkovic, R. Lenschow, H. Stemland, and S. Rosseland
Fatigue properties of high-strength concrete in compression were studied. Two types of normal-density concrete and one type of lightweight aggregate concrete have been tested. The numbers indicate the planned mean strength in MPa of 100 x 100 x 100 mm cubes. The influence of different moisture conditions was studied in an introductory investigation. Three different sizes of cylinder were tested for each of the three curing and testing conditions: in air, sealed, and in water. The tests showed that the fatigue properties of both the air and water conditions were scale-dependent, while the sealed condition was hardly influenced by the sizes of the specimens. The main investigation dealt with the influence of the variation in stress levels on the fatigue life. Test conditions with constant maximum stress levels showed significantly longer lives when the stress range was reduced. If the load levels were defined relative to the static strength, there was no obvious difference between the fatigue properties of the concrete qualities included in these tests. An additional investigation was performed on ND95 cylinders exposed to different combinations of cyclic load levels. It was found that initial cycling at lower load levels was beneficial for the fatigue life at the higher load levels. Based on the results of the experimental work, a design proposal for fatigue of concrete in compression was established.
10.14359/3740
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer