ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 20 Abstracts search results
Document:
SP123-01
Date:
January 1, 1991
Author(s):
PC. Cheung, T Paulay, and R. Park
Publication:
Symposium Papers
Volume:
123
Abstract:
As part of a United States/New Zealand/Japan/China collaborative research project, interior and exterior beam-column joint subassemblages with floor slabs of prototype two-way and one-way reinforced concrete building frames were designed for earthquake resistance using the current New Zealand concrete design code, NZS 3101:1982. Three full-scale subassemblages as designed were constructed and tested under quasi-static cyclic loading which simulated severe earthquake actions. The overall performance of each subassemblage during the tests was satisfactory in terms of strength and ductility. The joint core and column remained essentially undamaged while plastic hinges formed in the beams. The strong column-weak beam behaviour sought in the design, desirable in tall ductile frames designed for earthquake resistance, was therefore achieved. Although the joint cores of the subassemblages remained in the elastic range, joint core shear deformations contributed significantly to the interstorey drifts. Also, a significant proportion of the slab bars in tension contributed to the negative moment flexural strength of the beams. The performance of the one-way joint was superior to the performance of the two way joints.
DOI:
10.14359/10258
SP123
Editor: James O. Jirsa
SP123 This volume is a collection of technical papers on the aspects of design of beam-column joints for seismic resistance. Nineteen papers are divided into the following groups. - Tests conducted on specimens designed using current codes but with the same general geometry and a specified loading history. (4 papers) - Design recommendations -- Japan. (1 paper) - Influence of joint geometry on strength and deformation characteristics. (8 papers) - Influence of bond on joint performance. (4 papers) - Joint in precast systems and with high-strength materials. (2 papers)
10.14359/14219
SP123-09
Catherine Wolfgram French and Jack P. Moehle
In structures subjected to lateral loading, slab reinforcement acting as effective tensile reinforcement of the beams has been found to increase significantly the beam flexural strength. The enhanced beam flexural strength has several effects on the structural behavior, including a shift in the ratio of strengths between the beams and other members. This may result in a failure mechanism different from that anticipated. The slab contribution depends on several variables, including the connection type (interior or exterior), lateral deformation level, and lateral load history (uniaxial or multiaxial). This paper summarizes general behavior observed during isolated and multiple beam-column-slab connection tests. An approximation is given for estimating the amount of slab reinforcement to be considered as effective tensile reinforcement of the beams.
10.14359/2853
SP123-10
P. C. Cheung, T. Paulay, and R. Park
Proposes mechanisms of the transfer of forces to beam-column joints, generated under typical seismic actions in cast-in-place reinforced concrete slabs. One of the main objectives of the paper is to review behavioral models that should assist designers in visualizing the flow of internal forces in beam-column-slab subassemblages. It is postulated that membrane forces play a dominant role and that contributions of other actions, such as bending in slabs and torsion in transverse beams, are relatively unimportant, particularly when significant ductility demands arise during seismic motions. Locations at which slab reinforcements transmit tensile forces by means of bond to the surrounding concrete are considered to be particularly important in the assessment of the enhancement of beam flexural strength. The description of these phenomena is related to observations made during the testing of isolated reinforced concrete beam-column subassemblages with slabs simulating one-and two-way cast-in-place floor systems. Subsequently, the findings are extended to describe the perceived behavior of continuous floor slabs supported by beams of multibay ductile frames. The relevance of the flexural strength enhancement of beams to the design of beam-column joints and columns is briefly examined. Design recommendations are made, particularly with respect to the effective width of the tension flanges.
10.14359/2856
SP123-11
Hitoshi Hatamoto, Satoshi Bessho, and Yasuhiro Matsuzaki
Two series of experiments have been conducted to study the performance of wide beam-to-column subassemblages under lateral loadings. Results indicate that in moment-resisting frames: 1) the maximum effective beam width should be twice the column width, if all beam reinforcing bars are expected to yield within 2 percent of story deformation, and 2) the maximum amount of beam reinforcement not placed in the joint core should be limited in terms of resulting torsional stress in the outside beam portions. The torsional strength c åt = 24çb (by Kanoh and Yoshizaki) is a good design criteria for wide beam-column joints.
10.14359/2860
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer