ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 90 Abstracts search results
Document:
SP132-24
Date:
May 1, 1992
Author(s):
C. L. Hwang, R. Y. Lin, K. M. Hsu, and J. F. Chan
Publication:
Symposium Papers
Volume:
132
Abstract:
Class F fly ash was used as the basic granulating material. Catalysts and binders were added to evaluate the behavior of granulated material. The accelerated curing method was also considered. Results indicate that granulation rate depends closely on the slant angles of the disc, the revolving rate, the methods of adding admixtures, and granulation time. Though aluminum powder reduced unit weight and raised the strength of fresh particles, it had a detrimental effect on other properties. Addition of hydrophilic seed reduced the granulation time and increased productivity. The results showed that at a constant relative humidity, the higher the temperature, the more rapid and higher the strength development. It is important to maintain constant temperatures or low strengths may result. Normal steam curing, autoclave curing, and microwave steam curing have beneficial effects on the strength of fly ash lightweight aggregates. The differences in curing results are due to differences in mix proportioning of aggregates and duration of curing.
DOI:
10.14359/1953
SP132-25
Z. GiergicznyI
The admixtures of condensed silica fumes (CSF) and phosphogypsum (neutralized and dehydrated at 400 C) were used together with fly ashes as blended cement components to improve early strengths and other properties. The cements with the initial 15 to 50 percent low-calcium PFA content (SiO2 + AL2O3 + Fe2O3 - 83.3 percent) or 15 to 70 percent high calcium PFA content (22.1 percent CaO) were mixed with the additional components just mentioned. Standard tests at normal curing were made, as well as measurements after the low-pressure steam treatment at 70 C. All cements mixed with CSF showed standard compressive strengths about 13 to 20 MPa higher than the reference mortars. More detailed studies of the hardening process were also carried out using calorimetry, DTA, TG, XRD, and porosimetry, which showed acceleration of the hydration process due to pozzolanic properties of CSF. Reduction of total porosity and pore size was also found. The same positive effect of CSF was observed in the case of mortars treated at 70 C. This additive improves significantly the pozzolanic properties of low-calcium PFA. At standard curing, activated phosphogysum addition brings about a decrease in the hydrated calcium silicates. A substantial amount of ettringite forms and partially inverts into monosulfate after 28 and 90 days of hardening. At accelerated curing, the mortars containing phosphogypsum show a significantly higher degree of hydration than the reference mortar. The results relating to pastes and mortars have been confirmed for concretes. Therefore, one can conclude that the admixtures studied, particularly CSF, have positive influence on the properties of PFA concretes and help to augment the effect of PFA content in these concretes.
10.14359/1966
SP132-01
M. R. H. Dunstan, M. D. A. Thomas, J. B. Cripwell, and D. J. Harrison
Presents results of investigations carried out on high fly ash content concrete (HFCC) cores removed from several structures constructed in the U.K. since 1979. Structures investigated included a road pavement, a major road viaduct, water-retaining and industrial structures, and a slipway subjected to marine exposure. Concrete properties measured after 10 years of service include compressive strength, depth of carbonation, permeability, and chloride and sulfate penetration profiles. In addition, petrographic analysis of thin sections was also undertaken. The HFCCs studied were designed considering the fly ash to be just a further ingredient in the concrete rather than as a cement replacement. This led to higher fly ash contents and lower cement contents than is generally normal practice. The structures examined were in excellent condition after 10 years. Results show a durable concrete exhibiting increases in compressive strength beyond 28 days, little evidence of carbonation, low to average permeability, and resistance to chloride penetration. In this respect, it is significant that at the marine exposure sites, the chloride concentrations decreased significantly with depth. No evidence of alkali-silica reaction was detected in spite of reactive aggregates being present in some of the concretes.
10.14359/1905
SP132-21
J. Papayianni
The results of a great number of trial mixes for mix design of roller compacted concrete (RCC) are presented. This particular RCC used a local fly ash, rich in lime and sulfates, which does not meet any existing specification. This fly ash's performance in concrete has been studied for some time at the Laboratory of Reinforced Concrete of Aristotle University of Thessaloniki. Recently, this fly ash was used in the construction of a large RCC dam in northern Greece. Measurements of the strength development and the elasticity of RCC mixes showed that the 80 percent (by weight) of the cementitious material could be substituted for this fly ash. Therefore, it was proven that in RCC mixes this fly ash is more effective than in conventional concrete.
10.14359/1910
SP132-02
H. Hornain, F. L. Miersman, and J. Marchand
Effect of residual carbon content in fly ash on the hardened cement paste properties was investigated. Mortars and concretes were prepared with three different aluminosilicate-type fly ashes of the same mineralogical composition but containing, respectively, 5, 7, and 12 percent of residual carbon. Mixtures containing 15 and 30 percent of fly ash, as replacement of cement, were studied. The microstructure was studied by means of SEM observations and EDS analysis. Pore-size distributions were determined by mercury intrusion porosimetry. Compressive and flexural strengths were measured after 2, 7, 28, and 90 days. Results indicate that the residual carbon content in fly ash does not have any detrimental influence on the microstructure and on the mechanical strength development even at the highest carbon content.
10.14359/1920
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer