International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 90 Abstracts search results

Document: 

SP132

Date: 

May 1, 1992

Author(s):

Editor: V.M. Malhotra

Publication:

Symposium Papers

Volume:

132

Abstract:

SP-132 Published in two volumes...The first volume contains papers dealing with fly ash and natural pozzolans. The second volume consists of papers dealing with condensed silica fume and ferrous and non-ferrous slags.

DOI:

10.14359/14164


Document: 

SP132-48

Date: 

May 1, 1992

Author(s):

E. J. Sellevold and H. Justness

Publication:

Symposium Papers

Volume:

132

Abstract:

The decrease in relative humidity during hydration and the chemical shrinkage have been measured for different cement paste compositions. The amount of nonevaporable water per degree of hydration as found by NMR, pore size distribution by mercury intrusion, and total porosity to water have also been determined. The cement pastes were made form portland cement with 0, 8, and 16 percent condensed silica fume, with w/c + s of 0.20, 0.30, and 0.40. The relative humidity (RH) was found to decrease rapidly during the first 2 weeks and reach about 78 percent RH after more than a year for the lowest w/c + s, independent of the CSF dosage. The highest ratio gave about 87 percent RH. The nonevaporable water per degree of hydration depends on the NMR-based estimate of the degree of cement hydration, but it is most consistent (i.e., independent of w/c + s and CSF dosage) when it is assumed that the CSF dosage does not consume any water. The water porosity was found to increase with increasing CSF dosage, while the mercury intrusion results showed both a finer pore structure and smaller total porosity with increasing CSF dosage. Mercury intrusion into miniconcretes (dmax = 8 mm) with the same binders gave a much coarser pore size distribution, indicating that the paste-aggregate interface region is more open than the bulk paste. No evidence was found that increased CSF dosage improved the interface pore structure. This is in contrast to other evidence in the literature, and may be caused by partial dehydration and/or microcrack formation during the drying at 105 C.

DOI:

10.14359/2316


Document: 

SP132-49

Date: 

May 1, 1992

Author(s):

Elisabeth Atlass

Publication:

Symposium Papers

Volume:

132

Abstract:

Condensed silica fume (CSF) greatly influences not only the mechanical but also the physical properties of concrete. The most striking effect is the reduced permeability, caused by a change in the pore structure. Another sign of this alteration, though not as evident, is the change in the form of the water vapor isotherm. Preliminary results from an investigation concerning the first desorption isotherms of mortar with CSF-cement ratio varying between 0 and 25 percent and a water-cement ratio varying from 0.3 to 0.6 are presented. The results show that CSF influences the pore size distribution not only in the mesopore range, as shown in earlier studies, but also in the micropore range. The drying courses were also recorded in the project and it is clear that CSF significantly prolongs the time in reaching equilibrium, especially in relative humidities below 80 percent. This indicates that the continuous pore system is much narrower when CSF is incorporated. The question of when the "true" equilibrium is attained is discussed.

DOI:

10.14359/2327


Document: 

SP132-51

Date: 

May 1, 1992

Author(s):

V. G. Batrakov, S. S. Kaprielov, and A. V. Sheinfeld

Publication:

Symposium Papers

Volume:

132

Abstract:

Results of an investigation of cement paste structure, and strength, permeability, and frost resistance of concrete with admixtures of silica fume type are given. The admixtures are waste materials from metallic silicon, low-grade ferrosilicon, ferrosilicon chrome production, containing SiO2 in the amount of 92, 70, and 66 percent, and surface area of 25.0, 44.9, and 18.5 mý/g, respectively. The influence of the admixtures on the cement paste microstructure results in an increase of gel porosity volume, decrease of capillarity porosity, and in an increase of strength. Thus, concrete strength increases and its permeability decreases. Physical and chemical properties of the silica fume-type admixtures insignificantly affect gel pore volume, whereas they have significant influence on capillary porosity. An increased dosage of high-range water-reducing admixture (HRWR) is a beneficent factor in increasing hydration degree and gel porosity, decreasing capillary porosity volume, and, consequently, increasing strength. Concrete frost resistance with silica fume dosages up to 10 percent of cement mass is not lower than the reference concrete with the same amount of binder.

DOI:

10.14359/2348


Document: 

SP132-53

Date: 

May 1, 1992

Author(s):

Malvin Sandvik and Odd E. Gjorv

Publication:

Symposium Papers

Volume:

132

Abstract:

Silica fume has an accelerating effect on the early hydration of portland cement. Also, silica fume reduces the retarding effect of lignosulfates. At standard curing conditions, the contribution to strength from the pozzolanic reaction takes place primarily at 5 to 7 days. As a result, existing equations for prediction of strength development based on pure portland cement are no longer valid for concrete with silica fume. Some new equations for concrete with various contents of silica fume are presented.

DOI:

10.14359/2365


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer