ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 90 Abstracts search results
Document:
SP132-58
Date:
May 1, 1992
Author(s):
J. Malolepszy and J. Deja
Publication:
Symposium Papers
Volume:
132
Abstract:
The mechanical and structural properties of mortars containing silica fume were studied. Mortars containing 5 and 10 percent active silica additive were made. Mortars without silica fume (standard mortars) were also prepared. A first set of mortar specimens was cured entirely in water. A second set of mortars was cured in air. The third was immersed in water and then subjected to alternating cycles of storage in water and air. The results show a very close relation between the conditions of the mortars' curing and their mechanical properties. The flexural strengths of mortars containing silica fume, subjected to variable curing conditions, show periodic increases and reductions. SEM observations confirmed the relations found in the flexural strength tests.
DOI:
10.14359/2413
SP132-59
T. Kandra, F. Sakuramoto, and K. Suzuki
Compressive strength of concrete with silica fume cured at high temperatures generated by heat of hydration during early age was studied. The curing temperatures simulated the site-curing conditions of structural members. Four types of aggregates and four types of admixtures were used, and a total of seven concrete samples were cured at four temperature conditions ranging from 20 to 75 C. Results indicated the following: 1) at higher curing temperatures, the 1-week strength was higher but the strength gain from 1 to 4 weeks tended to be low; 2) independent of curing temperature, the type of aggregate greatly influenced the strength, and the results were the same with all the admixtures; 3) high-temperature curing influenced concrete strength independently of the admixture and aggregate; 4) equivalent age at 20 C based on the Arrhenius equation gave a reasonable estimation of compressive strength gain.
10.14359/2423
SP132-85
W. Brylicki, J. Malolepszy, and S. Stryczek
The lining of underground cavities for storage of natural gas requires a proper cementing paste as does the cementing of casing in boreholes placed in salt beds. The following properties of the cementing pastes are required: high corrosion resistance, minimal shrinkage, even some expansion, high leak tightness, good bond to steel and rock, proper rheology and strength. The following blended cements were investigated: cement "Nowa Huta" 25 with 40% blast-furnace slag (bfs), cement "Rejowiec" 45 for bridge construction and cement with 70% bfs. The cements were mixed with NaCl brine at a concentration 310 g NaCl/L at liquid to solid ration 0.45. The properties of pastes, such as density, rheological, sedimentation and filtration characteristics; time of setting; strength development and shrinkage were determined. The phase composition of pastes was studied by XRD and the microstructure was observed under SEM. The best results were obtained for the pastes with the blast-furnace slag.
10.14359/2212
SP132-84
K. Fukudome, K. Miyano, H. Taniguchi, and T. Kita
The resistance to freezing-and-thawing and chloride diffusion of antiwashout underwater concrete was investigated to evaluate the applicability for tidal zone in cold districts or reinforced concrete structures in marine environments. Comparisons were made with ordinary portland cement concrete of similar mix design. Two types of cement (ordinary portland cement and portland blast furnace slag cement) were used. Two types of blast furnace slag (Blaine fineness 500 and 700 m²/kg) were used as a cement replacement (slag content 30 and 50 percent by weight). The results show that antiwashout underwater concrete without blast furnace slag shows poor resistance to freezing-and-thawing compared with normal concrete. But the freezing-and-thawing resistance can be improved with blast furnace slag. This is due to the fact that concrete containing blast furnace slag has dense pore structures. Pore volume in the range of 10 to 10 3 nm in radius decreases significantly with blast furnace slag. Similarly, chloride diffusion depth becomes smaller with blast furnace slag.
10.14359/2220
SP132-01
M. R. H. Dunstan, M. D. A. Thomas, J. B. Cripwell, and D. J. Harrison
Presents results of investigations carried out on high fly ash content concrete (HFCC) cores removed from several structures constructed in the U.K. since 1979. Structures investigated included a road pavement, a major road viaduct, water-retaining and industrial structures, and a slipway subjected to marine exposure. Concrete properties measured after 10 years of service include compressive strength, depth of carbonation, permeability, and chloride and sulfate penetration profiles. In addition, petrographic analysis of thin sections was also undertaken. The HFCCs studied were designed considering the fly ash to be just a further ingredient in the concrete rather than as a cement replacement. This led to higher fly ash contents and lower cement contents than is generally normal practice. The structures examined were in excellent condition after 10 years. Results show a durable concrete exhibiting increases in compressive strength beyond 28 days, little evidence of carbonation, low to average permeability, and resistance to chloride penetration. In this respect, it is significant that at the marine exposure sites, the chloride concentrations decreased significantly with depth. No evidence of alkali-silica reaction was detected in spite of reactive aggregates being present in some of the concretes.
10.14359/1905
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer