International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 46 Abstracts search results

Document: 

SP149-18

Date: 

October 1, 1994

Author(s):

S. W. Shin, J. M. Ahn, K. S. Lee, S. H. Lee, and S. K. Ghosh

Publication:

Symposium Papers

Volume:

149

Abstract:

In general, the structural member using high-strength concrete is accompanied by high brittleness, which may result in the unexpected dangerous failure. For economy and safety, high-strength concrete may be used for compressive members (vertical members) and low-strength concrete for flexural members (horizontal members). ACI 318-89 recommends that when the specified compressive strength of concrete in the column is greater than 1.4 times that specified for the floor system, the column concrete shall extend 600 mm into the slab from column face to avoid unexpected failure. The structural behavior of beam-column joints with two different compressive strengths of concrete for the beams and the columns has not been investigated adequately. ACI-ASCE Committee 352 recommends that for joints that are part of the primary system for resisting seismic lateral loads, the sum of nominal moment strengths of the column sections above and below the joint ( M c), calculated using the axial load, which gives the minimum column moment strength, should not be less than 1.4 times the sum of the nominal strengths of the beam sections at the joint ( M b). Thus, those recommended values should be examined before high-strength concrete can be used with confidence and convenience in structural members. The results showed that the ACI 318-89 extension distance of 600 mm is safe at least for members up to 300 mm in total depth, and the 2h (h is overall depth of the beam) extension distance was found to be safe also for members under flexural loading with a column-to-beam flexural strength ratio of 1.8.

DOI:

10.14359/4022


Document: 

SP149-04

Date: 

October 1, 1994

Author(s):

A. K. Haug

Publication:

Symposium Papers

Volume:

149

Abstract:

The latest developments in concrete platform concepts for deep water and floating structures have indicated the need for further development in the field of practical concrete technology. Paper presents some of the most significant factors in this challenge such as increased compressive strength, improved workability, and stability of fresh concrete, use of high-strength lightweight aggregate concrete, measures to improve the concrete E-modulus, and utilization of variable concrete density to optimize the platform design. This has been achieved through further development of the constituent materials, refinements of the mix design, and advancements in production methods, as well as the use of high-quality lightweight aggregates.

DOI:

10.14359/4065


Document: 

SP149-05

Date: 

October 1, 1994

Author(s):

M. Sandvik, T. Hovda, and S. Smeplass

Publication:

Symposium Papers

Volume:

149

Abstract:

The troll GBS platform is the world's largest concrete offshore concrete platform. The platform is designed for an operational lifetime of 70 years and will be installed in the North Sea during 1995. To improve the buoyancy of the platform during tow-out to the field, a concrete mixture with reduced density has been developed, providing a characteristic 28-day cube compressive strength of at least 75 MPa and an in situ density of 2250 kg/m 3. The weight reduction has been obtained by partly replacing the natural coarse aggregates by high-quality lightweight aggregates. The concrete is denoted as modified normal density (MND) concrete. The modification was expected to reduce both compressive strength, Young's E-modulus, and material ductility to some extent. A comprehensive testing program comprising laboratory tests and full-scale tests has been performed to investigate and to document all relevant concrete properties related to mechanical, durability, and constructibility performance of the concrete. A secondary purpose of the investigations has been to evaluate the possibility of retaining the mechanical properties of the original normal density concrete by replacing the remaining coarse granite aggregate with a more rigid quartz-diorite aggregate. The laboratory investigations included the determination of the following concrete properties: fresh concrete properties, compressive strength development, compressive strength at sustained load, compressive E-modulus, tensile strength and E-modulus, stress-strain in compression, fatigue, fracture energy and characteristic length, shrinkage, creep, water intrusion, and alkali-silica reactivity.

DOI:

10.14359/4069


Document: 

SP149-06

Date: 

October 1, 1994

Author(s):

U. Wiens, C. Alfes, and P. Schiessl

Publication:

Symposium Papers

Volume:

149

Abstract:

The chemical and petrochemical industries that process chemical and petrochemical products manufacture, store, and transfer a number of liquids that are hazardous to the environment and particularly to the groundwater. In Germany, uncoated concrete may be used only as a secondary barrier for handling water-hazardous materials. Development and optimization studies were carried out to reduce the permeability and increase the ductility of concrete for this application. Concretes with styrene-butadiene-based polymer dispersions and silica fume were produced to reduce the permeability, and concretes with limestone or expanded clay instead of Rhine gravel to improve ductility. The mechanical behavior of the concretes was characterized by determining the stress-strain curves under tensile and compressive loading and the stress crack-opening curves. Resistance to environmentally hazardous liquids was tested using a special penetration test standardized in Germany. Various organic liquids, each representing a main chemical group and of differing water solubilities and viscosities, were used as test media.

DOI:

10.14359/4072


Document: 

SP149-07

Date: 

October 1, 1994

Author(s):

W. A. Al-Khaja, W. A. Rasheeduzzafar, M. H. Al-Sayed, and A. A. Al-Khoder

Publication:

Symposium Papers

Volume:

149

Abstract:

One of the techniques proposed to improve the durability performance of concrete in aggressive environments is to use quality concrete. Much research has shown that cement composition also has a significant effect on concrete durability in sulfate-bearing soils/groundwaters and in chloride-corrosive situations. High C 3A cements have been found to be superior in terms of protection against corrosion of reinforcement, although they have a lower sulfate-resistance performance. In many situations, such as marine and Sabkha environments, chlorides and sulfates occur concomitantly and operate against concrete durability simultaneously. This study has been carried out to evaluate the sulfate resistance and chloride penetration performance of high-strength concrete. Two high-strength concrete mixes in the range of 60 to 75 MPa were designed first by using a superplasticized concrete of 0.36 water-cement ratio (w/c) and second by replacing 10 percent cement by silica fume. The control for comparison is a 25 Mpa concrete made with a 0.58 w/c. Type I portland cement has been used to provide higher chloride-binding capacity and, hence, better corrosion protection. A mixed sodium and magnesium sulfate environment has been used to evaluate sulfate resistance. High-strength concrete made with silica fume blending showed the best sulfate resistance in a sodium sulfate environment and the worst performance in a magnesium sulfate environment. Also, the normal 0.58 w/c ratio of 300 kg/m 3 cement content mix showed 1.5 times better performance than the 0.36 w/c ratio 450 kg/m 3 cement factor mix in magnesium sulfate environment. High-strength concrete showed three to four times better performance against chloride penetration compared to normal strength concrete. Use of 10 percent silica fume further improved resistance against chloride penetration.

DOI:

10.14359/4074


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer