ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 46 Abstracts search results
Document:
SP149-18
Date:
October 1, 1994
Author(s):
S. W. Shin, J. M. Ahn, K. S. Lee, S. H. Lee, and S. K. Ghosh
Publication:
Symposium Papers
Volume:
149
Abstract:
In general, the structural member using high-strength concrete is accompanied by high brittleness, which may result in the unexpected dangerous failure. For economy and safety, high-strength concrete may be used for compressive members (vertical members) and low-strength concrete for flexural members (horizontal members). ACI 318-89 recommends that when the specified compressive strength of concrete in the column is greater than 1.4 times that specified for the floor system, the column concrete shall extend 600 mm into the slab from column face to avoid unexpected failure. The structural behavior of beam-column joints with two different compressive strengths of concrete for the beams and the columns has not been investigated adequately. ACI-ASCE Committee 352 recommends that for joints that are part of the primary system for resisting seismic lateral loads, the sum of nominal moment strengths of the column sections above and below the joint ( M c), calculated using the axial load, which gives the minimum column moment strength, should not be less than 1.4 times the sum of the nominal strengths of the beam sections at the joint ( M b). Thus, those recommended values should be examined before high-strength concrete can be used with confidence and convenience in structural members. The results showed that the ACI 318-89 extension distance of 600 mm is safe at least for members up to 300 mm in total depth, and the 2h (h is overall depth of the beam) extension distance was found to be safe also for members under flexural loading with a column-to-beam flexural strength ratio of 1.8.
DOI:
10.14359/4022
SP149-07
W. A. Al-Khaja, W. A. Rasheeduzzafar, M. H. Al-Sayed, and A. A. Al-Khoder
One of the techniques proposed to improve the durability performance of concrete in aggressive environments is to use quality concrete. Much research has shown that cement composition also has a significant effect on concrete durability in sulfate-bearing soils/groundwaters and in chloride-corrosive situations. High C 3A cements have been found to be superior in terms of protection against corrosion of reinforcement, although they have a lower sulfate-resistance performance. In many situations, such as marine and Sabkha environments, chlorides and sulfates occur concomitantly and operate against concrete durability simultaneously. This study has been carried out to evaluate the sulfate resistance and chloride penetration performance of high-strength concrete. Two high-strength concrete mixes in the range of 60 to 75 MPa were designed first by using a superplasticized concrete of 0.36 water-cement ratio (w/c) and second by replacing 10 percent cement by silica fume. The control for comparison is a 25 Mpa concrete made with a 0.58 w/c. Type I portland cement has been used to provide higher chloride-binding capacity and, hence, better corrosion protection. A mixed sodium and magnesium sulfate environment has been used to evaluate sulfate resistance. High-strength concrete made with silica fume blending showed the best sulfate resistance in a sodium sulfate environment and the worst performance in a magnesium sulfate environment. Also, the normal 0.58 w/c ratio of 300 kg/m 3 cement content mix showed 1.5 times better performance than the 0.36 w/c ratio 450 kg/m 3 cement factor mix in magnesium sulfate environment. High-strength concrete showed three to four times better performance against chloride penetration compared to normal strength concrete. Use of 10 percent silica fume further improved resistance against chloride penetration.
10.14359/4074
SP149-23
F. K. Kong, S. Teng, P. p. Maimba, K. H. Tan, and L. W. Guan
The current design recommendations for concrete deep beams given in the ACI Code, Canadian Code, CEB-FIP Model Code, CIRIA Guide-2, etc., are based on research results on normal strength concrete. As such, these design recommendations may not be directly applicable to deep beams made of high-strength concrete. A summary of the authors' recent research on the shear behavior of deep beams made of high-strength concrete is presented. Experimental results on the ultimate shear strengths of single-span, continuous, and slender deep beams as affected by the strength of concrete, shear-span-to-depth ratio, and slenderness ratio, are compared to various design methods. It is found that the ACI method is overly conservative for all cases, the Canadian Code method is unconservative for higher strength concrete, the CEB-FIP method gives somewhat scattered predictions, and the CIRIA Guide-2 is slightly unconservative for all cases. A minor modification on the CIRIA Guide-2 method is shown to yield a reliable method for all the cases investigated.
10.14359/4208
SP149-30
I.K. Fang and J.Y. Wu
An experimental investigation was conducted on the shear behavior of deep beams made with steel fiber reinforced high performance concrete (HPC). Twenty-six beam specimens with various shear span-effective depth ratios, steel fiber contents, amounts of vertical and horizontal web reinforcements were tested under static loads. In addition to the strength test, extensive instrumentations were designed for the measurements of average strains of reinforced concrete in the shear span and strains of web reinforcements. The web-shear cracking initiated as the first inclined shear crack. About 30% increase in the inclined shear strength and 25% increase in the ultimate shear strength can be achieved with addition of 1 .O% steel fiber for specimens having a/d= 1 .5. The strain of vertical web reinforcements became negative and the horizontal web reinforcements were stretched to yield state for specimens having a/d ratios approach 0.5. The measured load-deformation relationships of reinforced concrete and strains of web reinforcements were compared with the prediction of the softened truss model of steel fiber reinforced concrete proposed by other investigators. Good correlation was found from the comparisons.
10.14359/10050
SP149
Editor: V.M. Malhotra
SP-149 The theme of this second ACI International Conference was high-performance concrete. The conference proceedings title "High-Performance Concrete" contains 45 papers presented at this program. Whether you are currently involved with or are considering the use of high-performance concrete, this special symposium document is a must for you. Use the valuable information found in the above titles as well as the other listed in this special document.
10.14359/14189
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer