ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 46 Abstracts search results
Document:
SP149-44
Date:
October 1, 1994
Author(s):
G. C. Hoff
Publication:
Symposium Papers
Volume:
149
Abstract:
The use of high-strength lightweight concrete (HSLWC) in offshore oil and gas platforms is becoming more common. The constant wave action on these structures imposes continual fatigue loading on the concrete. Paper reviews previous research on both compressive and flexural fatigue behavior of HSLWC. The fatigue behavior of HSLWC is comparable or somewhat better than high-strength normal-density concrete (HSNDC) tested under the same conditions. The cyclic strain behavior of HSLWC is significantly different than for HSNDC and there is little change in strain behavior with increasing cycles of load until failure occurs. The fatigue life is reduced when the concrete is tested in submerged conditions. There is no significant difference between the S-N curves for reinforced and nonreinforced concrete. The mechanism that causes HSLWC to have comparable or better performance than HSNDC is attributed to the improved microstructure of the matrix-aggregate interface. This improvement reduces microcracking that typically leads to fatigue damage. The effect of crack blocking by sea salt depositions is discussed.
DOI:
10.14359/4286
SP149-45
J. J. Schemmel, , M. L. Leming, and M. R. Hansen
A 4-year study, conducted by a consortium of three universities, on the use of high-performance concrete in highway applications was recently completed. A major goal of this research project was to determine if high-performance concrete mixes could be successfully produced in the field. In addition, an evaluation was to be made of the long-term performance of this concrete under field service conditions. Field installations were constructed in five states for this purpose. Paper provides potential users of high-performance concrete with general recommendations and guidelines for production and placement.
10.14359/4294
SP149-11
D. Galeota, M. M. Giammetteo, and R. Marino
Results of an experimental study on the structural behavior of exterior beam-column joints made of high-strength concrete and subjected to large reversal loads are presented. Variables examined were the joint shear stress and the ratio of transverse reinforcement. Based on the experimental results, it was shown that properly designed and detailed high-strength reinforced beam-column joints display ductile hysteretic behavior.
10.14359/4159
SP149-12
H. Manalip, M. Pinglot, and M. Lorrain
Although high-strength concrete (HSC) has a brittle behavior in the case of specimens subjected to axial compression, a quite different behavior is obtained in the case of reinforced or prestressed concrete members subjected to bending. In this paper, five tests of HSC beams subjected to pure bending are described and analyzed to quantify their ductility and to deduce the real strain-softening behavior of their compressed zones. Three cases are studied: reinforced concrete, prestressed concrete, and partially prestressed concrete. The comparison of the experimental ultimate deformations (such as plastic rotations, curvatures, deflections) with the calculated values show that the strain-softening of compressed concrete may occur after the peak stress and can be defined by a k' coefficient varying from 0 to 1. For the tested beams, it was found that the use of HSC instead of normal strength concrete (NSC) results in the doubling of the plastic rotation capacity, for reinforced or prestressed beams subjected to pure bending.
10.14359/4162
SP149-13
M. Imama Vamdewalle, and F. Mortelmans
Sixteen very high strength concrete beams (3600 x 350 x 200 mm) with and without steel fibers were tested under different combinations of shear force and bending moment. The beams were singly reinforced and without shear (web) reinforcement. The cylinder compressive strength of concrete was about 110 MPa. The main variables in this program were: shear span/depth ratio (a/d), the steel fiber content (V f), and the percentage of the longitudinal flexural reinforcement ({rho}). The test results showed that, adding steel fibers to high-strength concrete increased the ultimate shear strength, increased the stiffness, reduced the deflection, and transformed the failure mode into a more ductile one. Based on the test results, two empirical expressions have been proposed to predict the shear strength of steel fiber high-strength concrete.
10.14359/4164
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer