ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 46 Abstracts search results
Document:
SP149-22
Date:
October 1, 1994
Author(s):
H. Tanaka, Y. Sato, R. Park, and N. Kani
Publication:
Symposium Papers
Volume:
149
Abstract:
In recent years, moment-resisting frames built using high-strength concrete have been used for high-rise buildings, primarily for economic reasons. When such high-rise buildings are subjected to severe earthquakes, cyclic horizontal and axial loading can be imposed on the exterior columns. The ductile behavior of such columns needs to be insured. In this study, improvement of the flexural ductility of high-strength concrete columns under high axial compressive load is attempted by arranging longitudinal bars with mixed steel grades. The basic concept of this method is to achieve the gradual attainment of yield of longitudinal bars, from low- to high-strength steel, as the column deflection increases, and thus to delay the column reaching the maximum moment capacity until the column deflection attains the required level. To verify the adequacy of the preceding design concept, six cantilever columns with 400-mm-square cross section have been constructed and tested under simulated severe seismic lateral loading with axial compressive load of either 0.3 f' c or 0.6 f' cA g. The compressive strength of concrete f' c was 65.7 MPa on average, and steels with yield strengths of 442 and 1033 MPa were used for longitudinal reinforcing bars. The adequacy of the preceding design concept was verified from the test results, and it was found that the New Zealand concrete design code could provide a good guideline for its application to design.
DOI:
10.14359/4169
SP149-24
Q. Wang, G. Zhoo, and L. Lin
Ductility of high-strength concrete columns is very important in the aseismic design. There are many factors affecting the ductility of compression-bending members. The axial load ratio and volume stirrups ratio are main factors. Based on the experimental research of reinforced concrete columns with high-strength and normal strength concretes under monotonic and cyclic loading, it can be observed that under different axial load ratio and stirrup volume ratio the damage pattern of members is different, and there is also obvious difference in the ductility. To control ductility of members, we must control the damage pattern. If the axial load ratio is high, the shear-compressive damage of the column should be avoided to provide the required ductility. On the basis of experiments, the mechanism of the effect of axial load ratio on the ductility of column is also discussed. The axial load ratio limits are proposed under the condition of limited ductility. The experiments show that the relationship between stirrup ratio and axial load ratio is not linear if the axial load ratio is high, which is different from previous research. In the design, a simplified bilinear relationship can be adopted that agrees well with the experimental results.
10.14359/4171
SP149-29
F. A. Al-Jahdali, F. F. Wafa, and S. A. Shihata
Experimental results on the bond behavior of high-strength concrete are presented. A total of 36 specimens was tested. The variables were the concrete compressive strength, the bar diameter, and the embedded length. The concrete compressive strength varied from 42 to 78 MPa (6000 to 11,000 psi). The bar diameters were 14, 16, 18, and 20 mm. The bond tests were conducted using a modified version of the Danish Standard DS 2082 pullout test in which the concrete surrounding the bar was in uniform tension. The test results indicate that the average bond stress at failure increases with the increase in the concrete compressive strength and decreases with the increase in the embedded length. The embedded length calculated using the ACI Building Code 318-89 equation caused a steel yielding failure. The predominant type of failure was the splitting of concrete; however, yielding of the embedded steel preceded the splitting failure in more than half of the specimens. It was observed that the ACI Building Code equation underestimates average bond stress for high-strength concrete. A model is developed to predict the bond strength of high-strength concrete in terms of the concrete cover, bar diameter, embedded length, and concrete compressive strength as variables. The proposed equation gave good prediction to the bond stress at failure of the pullout specimens tested in this investigation. 260-594
10.14359/4173
SP149-08
P. Fidjestol and J. Frearson
Reports data from a comparative, long-term study of several blended cements. The study compared the performances of five different binder systems for strength and for properties related to durability. It was found that both ground granulated blast furnace slag (ggbs/slag) and silica fume (microsilica) were very efficient in improving durability and impermeability. The two materials combined with OPC in a triple blend showed better performance than either on its own, and in this combination, silica fume compensated for much of the delayed strength development in slag cement concretes. Paper gives a thorough summary of the results obtained during the first 30 months of the project.
10.14359/4078
SP149-09
S. L. Mak and A. Lu
A high-performance concrete may posses satisfactory performance in many aspects other than compressive strength. In the context of in situ strength development, the performance of concrete at an early age is important. The temperature development, resistance to thermal cracking, early age engineering properties, and in situ strength development may all play a significant role in insuring satisfactory long-term performance. Describes the engineering properties of some very high-strength and high-performance concretes containing blast furnace slag with compressive strengths in excess of 80 Mpa under simulated "in situ" conditions of restricted moist curing and high-hydration temperatures. The influence of blast furnace slag content and the implications of the in situ development of engineering properties on performance are discussed.
10.14359/4080
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer