International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 46 Abstracts search results

Document: 

SP149-30

Date: 

October 1, 1994

Author(s):

I.K. Fang and J.Y. Wu

Publication:

Symposium Papers

Volume:

149

Abstract:

An experimental investigation was conducted on the shear behavior of deep beams made with steel fiber reinforced high performance concrete (HPC). Twenty-six beam specimens with various shear span-effective depth ratios, steel fiber contents, amounts of vertical and horizontal web reinforcements were tested under static loads. In addition to the strength test, extensive instrumentations were designed for the measurements of average strains of reinforced concrete in the shear span and strains of web reinforcements. The web-shear cracking initiated as the first inclined shear crack. About 30% increase in the inclined shear strength and 25% increase in the ultimate shear strength can be achieved with addition of 1 .O% steel fiber for specimens having a/d= 1 .5. The strain of vertical web reinforcements became negative and the horizontal web reinforcements were stretched to yield state for specimens having a/d ratios approach 0.5. The measured load-deformation relationships of reinforced concrete and strains of web reinforcements were compared with the prediction of the softened truss model of steel fiber reinforced concrete proposed by other investigators. Good correlation was found from the comparisons.

DOI:

10.14359/10050


Document: 

SP149-01

Date: 

October 1, 1994

Author(s):

T. J. Pasko, Jr., and G. J. Frohnsdorff

Publication:

Symposium Papers

Volume:

149

Abstract:

Sixteen agencies of the U.S. federal government have developed an interagency proposal for promoting the use of high-performance concrete and other materials for use in the nation's infrastructure. They are working jointly with the Civil Engineering Research Foundation (CERF) to enlist private sector support for sponsoring a research and development program aimed at getting the materials into use. CERF is drawing upon the technical community, such as that in ACI, to define the various research needs and studies that will lead to materials acceptance. Materials other than concrete are addressed in other parts of the total program. Workshops were held in the spring and fall of 1993 to develop schedules and priorities. A tentative cost for the concrete program is approximately $200 million over 10 years, which includes some technology transfer and which would be expected to be matched by some private sector funding.

DOI:

10.14359/4273


Document: 

SP149-03

Date: 

October 1, 1994

Author(s):

G. C. Hoff, R. Walum, R. Elimov, and H. R. Woodhead

Publication:

Symposium Papers

Volume:

149

Abstract:

The Hibernia offshore concrete platform is being constructed in Newfoundland, Canada, and will be used in hydrocarbon production on the Grand Banks off the east coast of Canada. The 111-m tall concrete structure will contain approximately 165,000 m 3 of high-strength concrete. Construction of the concrete platform through 1993 consisted of a 108-m-diameter base slab that rested on a series of precast and cast-in-place concrete skirts. Specified 28-day compressive strengths (cylinder) for the skirts and base slab were 49 and 69 MPa, respectively. Actual average compressive strengths achieved were73.8 and 81.7 MPa, respectively. The remaining construction will be completed by 1996. The use of two different concrete production systems and their results are described.

DOI:

10.14359/4254


Document: 

SP149-16

Date: 

October 1, 1994

Author(s):

N. Maruyama, M. Yurugi, H. Konishi, and Y. Murahashi

Publication:

Symposium Papers

Volume:

149

Abstract:

When a damaged concrete slab is repaired, new concrete will generally be placed in a downward direction. Form panels must be set up first under the damaged concrete slab, and then concrete must be placed between the form panels and the damaged slab. However, compaction by vibrator is needed in most concrete (slump: 8 to 21 cm), and therefore concrete placement under a damaged slab that needs repair is impossible realistically. A repair method using high-performance concrete without vibration or compaction was developed. The method was applied to the repair of concrete slabs that had been damaged by heat. It was confirmed that this repair method was easier and that repair was possible while the slab was in use. In addition, the costs and construction period were reduced greatly by this repair method.

DOI:

10.14359/4255


Document: 

SP149-43

Date: 

October 1, 1994

Author(s):

C. T. Thornton

Publication:

Symposium Papers

Volume:

149

Abstract:

The twin 450-m Petronas Towers under construction in Kuala Lumpur City Centre, Malaysia, are discussed. These world's tallest buildings use concrete columns, ring beams and a core of 40- to 80-MPa cube strength concrete, and steel long-span floor beams. Benefits of high-strength concrete are discussed, including occupant comfort achieved using mass-to-length building period and high inherent damping to reduce building response, high lateral stiffness, simple monolithic cast in situ connections, reasonable member sizes, local labor use, and light erection equipment. Special design features include deep barrette foundations acting in friction, temperature control measures for a massive mat pour, treatments at stepped and sloping columns, and use of haunched beams to accommodate mechanical ducts. The construction approach to creep and shrinkage is also discussed.

DOI:

10.14359/4256


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer