ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 16 Abstracts search results
Document:
SP151-13
Date:
July 1, 1994
Author(s):
S. K. Ojha
Publication:
Symposium Papers
Volume:
151
Abstract:
Describes investigation and design of repairs to the approach decks of the Verrazano Narrows Bridge in New York City. In addition, all the joints will be replaced, electric manholes and pull boxes will be rehabilitated, and new power and communications cables will be pulled. These bare concrete decks exhibit extensive deterioration in the form of spalls, cracks, leakage, and efflorescence. A total of approximately 787,000 square feet of deck area will be repaired; this includes approximately 150,000 square feet of deck replacement. Total estimated cost is $45 million, and the construction duration is 5 to 6 years.
DOI:
10.14359/4366
SP151-14
R. S. Lanyi
Explains the technology developed by Alberta Transportation and Utilities for field prestressing repairs to precast, prestressed concrete bridge girders. This repair technique restores structural integrity quickly and cost effectively. Applications regarding high load impact damage and corrosion of prestressing strand are discussed, based on Reid Crowther's experience and application of this repair technique.
10.14359/4373
SP151-15
R. Navarro, R. J. Bucheral, R. J. Gulyas, and C. Glasscock
In the early 1960s, the city of El Paso constructed the Texas, Piedras, Raynor Street Bridge, a mile-long, four-lane artery leading to the center of downtown, and a main road important to many businesses and merchants. Time and the effects of chloride penetration from road salts, plus carbonation, took its toll on this bridge. Corrosion of the reinforcing steel led to spalls on pier caps and corrosion of columns, in addition to massive spalling and delaminations of the bridge deck and parapets. Early in 1990, a complete structural repair of the bridge was conducted. Attempts to repair the bridge were unsuccessful. Cracks and delaminations in the substrate and in the areas that had been repaired were evident. Due to safety concerns, the bridge was closed for structural repairs. Repairs began again in November 1991. The first stage of repair consisted of removing the previous failed materials and all unsound concrete. Once all areas were prepared, the low-pressure spraying of a structural, one-component, high-strength fiber reinforced, shrinkage-compensated product began. Three men were employed in the batching and spraying of the material--two at the hopper/mixing unit, and one operating the spray nozzle. Using a pump for placement, the contractor was able to realize a maximum of 3 yd 3 per hr. Workers with trowels followed closely behind the nozzle man, and, using a finishing aid, were able to finish the placement quickly and efficiently. Circular bridge piers were finished with a template to maintain the design cross section. A water-based curing compound was applied to insure maximum moisture retention and full hydration of the mortar. All patches were covered with thermal protection for 7 days, to allow for cure. Because the sprayed material adheres well, it performed exceptionally on all of the vertical and overhead repairs required on this bridge. Its excellent bond strength, outstanding structural properties, and low permeability provided the needed characteristics for this job. The sprayability of the product meant less labor required on the job and faster turnaround. Since this was the second repair of this bridge, these characteristics were very important. The product performed exceptionally well and resulted in a hard and dense repair.
10.14359/4374
SP151
Editor: Richard E. Weyers
SP-151 The Philip D. Cady International Symposium was held in Minneapolis, Minnesota, on November 9 and 10, 1993. The symposium volume includes 15 papers on concrete bridges in aggressive environments. The papers address the performance, protection, assessment, and the repair and rehabilitation of concrete bridges. The performance papers include the corrosion protection afforded by concrete bridge deck overlays, corrosion in prestressed concrete bridges, and the use of calcium nitrite in field structures. Protection papers address the performance of silane sealers, coatings, and waterproofers. Condition assessment technologies include measuring the corrosion rate of steel in concrete and the diffusion of chloride ions in bridge decks with overlays. Experiences in the repair and rehabilitation of concrete bridges by practitioners is also presented. The Philip D. Cady Symposium was sponsored by ACI Committees 345, 222, 515, and 201.
10.14359/14191
SP151-02
M. Nagi and D. Whiting
The practice of prestressing steel has proven to be a very successful method of construction compared to conventional reinforced concrete in increasing load-carrying capacity, improving crack control, and slenderizing structural elements. However, corrosion in prestressed concrete has much more serious consequences than in normal reinforced concrete. Tendons are subjected to high mechanical stresses (often up to 70 to 80 percent of their tensile strength). Under an FHWA contract dealing with rehabilitation of prestressed concrete bridge components by nonelectrical methods, a comprehensive technology review focusing on corrosion of prestressing steel in highway structures was conducted and is summarized in this paper. Types of corrosion and recent theories explaining stress corrosion and hydrogen embrittlement are presented. Susceptibility of prestressing steel to corrosion in prestressed and post-tensioned concrete structures is covered. Factors such as concrete materials, prestressing steel, and environments, which may influence such corrosion, are categorized. Laboratory and field studies dealing with a variety of corrosion issues in pretensioned and post-tensioned concrete are also presented. These issues include the development and improvement of grout materials for bonded tendons in post-tensioned concrete members, use of epoxy-coated prestressing wires, and corrosion of unbonded tendons under severe exposure. Selected case histories and field evaluation of concrete bridges subjected to corrosion are also included. This study gives an overview of corrosion problems in prestressed concrete members and should help engineers to diagnose causes of corrosion and select the right methods and materials to be used for rehabilitation as well as in new constructions.
10.14359/4342
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer