International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 16 Abstracts search results

Document: 

SP151-14

Date: 

July 1, 1994

Author(s):

R. S. Lanyi

Publication:

Symposium Papers

Volume:

151

Abstract:

Explains the technology developed by Alberta Transportation and Utilities for field prestressing repairs to precast, prestressed concrete bridge girders. This repair technique restores structural integrity quickly and cost effectively. Applications regarding high load impact damage and corrosion of prestressing strand are discussed, based on Reid Crowther's experience and application of this repair technique.

DOI:

10.14359/4373


Document: 

SP151-15

Date: 

July 1, 1994

Author(s):

R. Navarro, R. J. Bucheral, R. J. Gulyas, and C. Glasscock

Publication:

Symposium Papers

Volume:

151

Abstract:

In the early 1960s, the city of El Paso constructed the Texas, Piedras, Raynor Street Bridge, a mile-long, four-lane artery leading to the center of downtown, and a main road important to many businesses and merchants. Time and the effects of chloride penetration from road salts, plus carbonation, took its toll on this bridge. Corrosion of the reinforcing steel led to spalls on pier caps and corrosion of columns, in addition to massive spalling and delaminations of the bridge deck and parapets. Early in 1990, a complete structural repair of the bridge was conducted. Attempts to repair the bridge were unsuccessful. Cracks and delaminations in the substrate and in the areas that had been repaired were evident. Due to safety concerns, the bridge was closed for structural repairs. Repairs began again in November 1991. The first stage of repair consisted of removing the previous failed materials and all unsound concrete. Once all areas were prepared, the low-pressure spraying of a structural, one-component, high-strength fiber reinforced, shrinkage-compensated product began. Three men were employed in the batching and spraying of the material--two at the hopper/mixing unit, and one operating the spray nozzle. Using a pump for placement, the contractor was able to realize a maximum of 3 yd 3 per hr. Workers with trowels followed closely behind the nozzle man, and, using a finishing aid, were able to finish the placement quickly and efficiently. Circular bridge piers were finished with a template to maintain the design cross section. A water-based curing compound was applied to insure maximum moisture retention and full hydration of the mortar. All patches were covered with thermal protection for 7 days, to allow for cure. Because the sprayed material adheres well, it performed exceptionally on all of the vertical and overhead repairs required on this bridge. Its excellent bond strength, outstanding structural properties, and low permeability provided the needed characteristics for this job. The sprayability of the product meant less labor required on the job and faster turnaround. Since this was the second repair of this bridge, these characteristics were very important. The product performed exceptionally well and resulted in a hard and dense repair.

DOI:

10.14359/4374


Document: 

SP151-01

Date: 

July 1, 1994

Author(s):

W. P. Chamberlin and R. E. Weyers

Publication:

Symposium Papers

Volume:

151

Abstract:

The service life of latex-modified concrete and low-slump dense concrete bridge deck overlays is estimated by extrapolating historical performance data obtained from the results of field research and investigations conducted in the U.S. and Canada. The data suggest that when concrete removal criteria are based on half-cell potential rather than actual damage, when removal of chloride-contaminated concrete is extended to below the reinforcing bar, and when the substrate is sandblasted to remove microcracking prior to cleaning, a mean service life of 30 to 50 years is likely.

DOI:

10.14359/4382


Document: 

SP151-10

Date: 

July 1, 1994

Author(s):

S. Feliu, J. A. Gonzalez, and C. Andrade

Publication:

Symposium Papers

Volume:

151

Abstract:

On-site monitoring of the rate of corrosion of reinforcements is a priority task. There are various available devices for measuring I corr. Most of them entail a prior measurement of the {DELTA}E/{DELTA}I, which defines the polarization resistance (R p). However, direct estimations of R p from the {DELTA}E/{DELTA}I ratio are usually unfeasible with large structures because they provide an apparent polarization resistance (R p app) that differs to a greater or lesser extent from the true R p value depending on the experimental conditions. This paper analyzes the influence of some experimental factors (that is, the use of unconfined or guard ring-confined electric signals, the CE size, and the presence of active and passive areas in reinforcements) on the R p app accuracy of the I corr values derived from it. The more correct I corr values can be obtained by sensorized confinement of the electric signal applied with the aid of a guard ring and supplementary reference electrodes for monitoring the electric field confinement.

DOI:

10.14359/4383


Document: 

SP151-02

Date: 

July 1, 1994

Author(s):

M. Nagi and D. Whiting

Publication:

Symposium Papers

Volume:

151

Abstract:

The practice of prestressing steel has proven to be a very successful method of construction compared to conventional reinforced concrete in increasing load-carrying capacity, improving crack control, and slenderizing structural elements. However, corrosion in prestressed concrete has much more serious consequences than in normal reinforced concrete. Tendons are subjected to high mechanical stresses (often up to 70 to 80 percent of their tensile strength). Under an FHWA contract dealing with rehabilitation of prestressed concrete bridge components by nonelectrical methods, a comprehensive technology review focusing on corrosion of prestressing steel in highway structures was conducted and is summarized in this paper. Types of corrosion and recent theories explaining stress corrosion and hydrogen embrittlement are presented. Susceptibility of prestressing steel to corrosion in prestressed and post-tensioned concrete structures is covered. Factors such as concrete materials, prestressing steel, and environments, which may influence such corrosion, are categorized. Laboratory and field studies dealing with a variety of corrosion issues in pretensioned and post-tensioned concrete are also presented. These issues include the development and improvement of grout materials for bonded tendons in post-tensioned concrete members, use of epoxy-coated prestressing wires, and corrosion of unbonded tendons under severe exposure. Selected case histories and field evaluation of concrete bridges subjected to corrosion are also included. This study gives an overview of corrosion problems in prestressed concrete members and should help engineers to diagnose causes of corrosion and select the right methods and materials to be used for rehabilitation as well as in new constructions.

DOI:

10.14359/4342


1234

Results Per Page 




Edit Module Settings to define Page Content Reviewer