Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 7 Abstracts search results
Document:
SP158-03
Date:
January 1, 1996
Author(s):
Nam Chau; and Vern C. Rogers
Publication:
Symposium Papers
Volume:
158
Abstract:
Interest in the use of reinforced concrete structures in LLW disposal facilities has preceded the development of a comprehensive understanding of the long-term performance of these disposal technologies. With this in mind, Rogers and Associates Engineering Corporation has developed a new assessment computer model, restrict, that adopts a more complete, mechanistic approach to modeling concrete degradation, groundwater infiltration, leaching, and radiological risks.
DOI:
10.14359/1432
SP158-02
Nam Chau; Robert D. Baird; and Vern C. Rogers
Several engineered disposal technologies involving concrete structures have been proposed for low-level radioactive waste disposal. The long-term performance and behavior of reinforced concrete structures in disposal units have been examined. Under most conditions, the reinforcing steel and concrete work well together to withstand the natural forces. Under certain conditions, however, the reinforcement and concrete may be subject to environmental attack which may cause degradation of the reinforced concrete. Water infiltration through the structure may increase as a result of cracking and increasing permeability and thereby increase the potential for contaminant release. The model for estimating time to onset of reinforcing steel corrosion due to presence of chloride is presented. Requirements for design of reinforced concrete structures for low-level radioactive waste disposal facilities are suggested.
10.14359/1431
SP158-01
J. W. Gindstaff, S. C. St. John, and N. J. Antonas
Low-level radioactive waste (LLRW) must be disposed of in a manner that safeguards the environment and future generations. To this end, engineers should provide reasonable assurance that the proposed methods of disposal and materials of construction will function as intended throughout the design life. This paper addresses design and construction issues related to concrete for the nation's first commercial, above-grade, engineered LLRW disposal facility.
10.14359/911
SP158-06
Parviz Soroushian and Abdulrahman Alhozaimy
Water is generally involved in every form of concrete deterioration; the permeability of concrete usually determines the rate of deterioration. Since the permeation of water into concrete takes place through the capillary pores, a reduction in the volume of large (greater than about 0.01 micron) capillary voids in the paste matrix will reduce permeability. This can be assisted by the partial substitution of cement with fly ash in the paste. As a pozzolanic material, fly ash reacts chemically with the calcium hydroxide resulting from cement hydration to form compounds (mainly calcium silicate hydrate) with cementitious properties. The effects of fly ash type and content on the permeability characteristics of concrete materials subjected to two different curing conditions were investigated. Four different fly ash contents and three different fly ash types were considered to provide sufficient data for powerful statistical analysis of results. Fly ash was observed to be capable of reducing the permeability of concrete, even at early ages. Selection of fly ash type (Class F vs. Class C), the level of cement substitution with fly ash, and curing conditions had important effects on the permeability characteristics of fly ash concrete. The interactions between these factors were also generally important.
10.14359/898
SP158-05
Barry E. Scheetz and Jefferson P. Hoffer
The cement/silicate method of solidifying wastes was investigated. Emphasis was placed on the interaction between aqueous sodium silicate and portland cement hydration reactions. A definition of the role which the alkali- silicate plays in increasing the ability of cement hydration reactions to immobilize waste ions was the principal objective. Characterization relied upon calorimetry, X-ray diffraction, microstructural examination by scanning electron microscopy, and monitoring strength development of the waste forms. Increasing additions of sodium silicate to cement pastes accelerate hydration reactions, specifically the hydration of C 3 A and C 3 S, and decrease the presence of portlandite. Effects on compressive strengths of cement pastes were varied; at a water-cement ratio of 0.83, strengths increased with moderate sodium silicate additions, while at higher water-cement ratios, sodium silicate additions decreased strengths.
10.14359/897
Results Per Page 5 10 15 20 25 50 100