ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 11 Abstracts search results

Document: 

SP233-10

Date: 

March 9, 2006

Author(s):

P.-f. Huang

Publication:

Symposium Papers

Volume:

233

Abstract:

Self-Compacting Concrete (SCC) was developed in the later 1980’s and has attracted a wide interest in the world due to its unique properties. This study investigatesthe workability and earthquake resistance of SCC. Several chemical admixtures are added to the concrete to adjust its workability. The workability of fresh concrete is tested using different methods including slump cone, inversion slump cone, L-box and Orimet apparatus. Then the best SCC mixture ratio is selected for microstructural and earthquakeresistance investigations. The earthquake resistance of SCC is investigated on concrete frame. Two frames with the same size are designed and but one cast with SCC and theother one with ordinary concrete. The two frames are tested under low-cyclic loadingusing MTS loading system. ANSYS software is used to simulate and analyze the statictest. The test results give indication how the materials characteristics and constructability of SCC affect earthquake resistance behavior of the frame.

DOI:

10.14359/15842


Document: 

SP233-05

Date: 

March 9, 2006

Author(s):

C. Shi

Publication:

Symposium Papers

Volume:

233

Abstract:

Chemical admixtures and mineral powders are often used together in self-consolidating concrete (SCC) to achieve required flowability, passing ability and good segregation resistance. In this study, coal fly ash, blast furnace slag, limestone dust and ground glass powder are used as mineral powders. Different amounts of superplasticizer are added to give the same initial flowability. The properties of both fresh and hardened SCCs are measured. All these SCCs exhibit similar flowability changes with time except the SCCs with limestone powder lose their flowability faster than the rest. Although SCCs with fly ash and glass powder show similar flowability with time during initial time period, they have different setting times. Because blast furnace slag is a cementitious material, fly ash and glass powder are pozzolanic materials, and limestone dust is neither a cementitious nor a pozzolanic material, SCCs with slag exhibit the highest and SCCs with limestone dust the lowest strength from one to 28 days. However, the SCCs with limestone dust show the lowest autogenous and drying shrinkage among the four SCCs.

DOI:

10.14359/15834


Document: 

SP233-04

Date: 

March 9, 2006

Author(s):

R.P. Douglas, V.K. Bui, Y. Akkaya, and S.P. Shah

Publication:

Symposium Papers

Volume:

233

Abstract:

An experimental program which aimed at investigating the behavior of SCC containingClass F fly ash has been carried out. The fresh state properties of the concrete wereassessed using methods of segregation and flow. The rheology of the paste matrix wasalso characterized and compared with a previously developed paste rheology model. Inaddition, compressive strength, chloride permeability, and mold-finish were evaluated. The results indicate that it is possible to develop a SCC containing Class F fly ash that is high performing in its fresh state. Furthermore, the addition of fly ash was shown toreduce superplasticizer dosage, increase workability, and increase overall chloride permeability resistance. In addition, it was determined that the difference of densities between the aggregate and matrix influence the results of a previously developed pasterheology model.

DOI:

10.14359/15831


Document: 

SP233-06

Date: 

March 9, 2006

Author(s):

J. McBride and D.J. Mukai

Publication:

Symposium Papers

Volume:

233

Abstract:

This research examines the effect of aggregate content and gradation on self-consolidating concrete (SCC) passing ability. Passing ability is defined as an SCC mixture’s ability to flow through narrow spaces (e.g. closely spaced reinforcement) without segregating or blocking. The mixtures tested ranged over two uniform aggregate sizes, two aggregate contents, two different mixture design philosophies, and a gradated aggregate mixture. Passing ability tests, slump flow tests, horizontal flow tests, and stereology tests were performed on these mixtures. Stereology is a statistical counting technique used primarily by natural scientists. Concrete researchers have used this to describe bubble size and distribution in concrete. A vertical flow box was developed by McBride to determine the passing ability of the various mixtures. Various bar spacings are tested. From the results of this study, it seems that two stereology parameters can be correlated to the minimum bar spacing that will allow SCC to pass. These parameters are the ratio of maximum aggregate size to mean aggregate free distance and the ratio of maximum aggregate size to mean aggregate random spacing.

DOI:

10.14359/15835


Document: 

SP233-07

Date: 

March 9, 2006

Author(s):

E.P. Koehler, D.W. Fowler, C.F. Ferraris,and S. Amziane

Publication:

Symposium Papers

Volume:

233

Abstract:

The accurate determination of fresh concrete rheology is key to ensuring the successful production of self-consolidating concrete (SCC). Rheometers, however, are used infrequently in the field. Empirical test methods are most commonly used to determine SCC workability despite measuring quantities that are related to rheological parameters only in an indirect way, if at all. Instead of using multiple empirical test methods to measure the workability of SCC, it is desirable to use a rheometer in both the laboratory and field to determine the flow properties of SCC quickly. Existing rheometers are generally unsuitable for routine field use due to their large size, high cost, or both. This paper describes the use of the International Center for Aggregates Research (ICAR) rheometer, a low-cost, fully portable device that can measure concrete mixtures ranging in workability from approximately 50 mm in slump to SCC. Laboratory test results of SCC mixtures and field testing experience are presented to demonstrate the validity and practicality of the ICAR rheometer.

DOI:

10.14359/15837


123

Results Per Page