ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 8 Abstracts search results
Document:
SP251
Date:
March 1, 2008
Author(s):
Editor: Corina-Maria Aldea / Sponsored by: ACI Committee 549
Publication:
Symposium Papers
Volume:
251
Abstract:
The main advantage of textiles as reinforcements in cement-based composites is in the enhancement of mechanical behavior. Textile-reinforced concrete (TRC) has emerged as a novel composite with various potential applications in non-structural and, more recently, structural building materials, including thin and slender elements, repair, and strengthening of existing structural members. The wide variety of textile production methods allows great flexibility in textile design, which enables controlling of textile geometry, yarn geometry, and orientation of yarns in various directions. This diversity is advantageous in the development of cement-based composites and allows engineering of the performance of the final products for the desired requirements. Recognizing the increasing research interest in thin fiber-reinforced cement-based composites using fabrics and hybrid systems (fabrics + chopped fibers) and their emerging industrial applications in the last years, there has been a close communication and collaboration between ACI Committee 549, Thin Reinforced Cementitious Products and Ferrocement, and RILEM TC 201, Textile Reinforced Concrete (TRC), in the area of TRC. Following two two-part technical sessions, held at the 2005 ACI conventions in New York and Kansas City, ACI Committee 549 sponsored the technical session “Design and Applications of Textile Reinforced Concrete” at the ACI Fall 2007 Convention in Puerto Rico. Seven papers were presented by invited international experts from Germany and co-authored by members of RILEM TC 201. This Special Publication (SP) contains seven papers that provide insight into the state-of-the-art design and application of TRC. The topics of the papers cover the following: materials aspects related to serviceability; strength and damage accumulation; TRC for flexural strengthening of reinforced concrete structures – structural behavior, design model, and application for a concrete shell; use of TRC as a subsequently applied waterproof structure; application of TRC for lightweight structures; and sandwich panels with thin-walled TRC facings for structural exterior walls and nonstructural façades. The papers included in this publication have been peer reviewed by international experts in the field according to the guidelines established by the American Concrete Institute. The future of thin fiber and textile-reinforced cementitious systems depends on their ability to compete with existing solutions and to identify new applications. Efforts are required in the areas of process, design, and implementation in industrial and full-scale applications of TRC. On behalf of ACI Committee 549, the editor would like to thank all the authors for their contributions and the reviewers for their assistance and valuable suggestions and comments.
DOI:
10.14359/19749
SP251-07
J. Hegger, M. Horstmann, and A. Scholzen
Textile-reinforced concrete (TRC) is a composite material made of open-meshed textile structures and a fine-grained concrete. The application of TRC leads to the design of filigree and lightweight concrete structures with high durability and high quality surfaces. In recent years, TRC has become an attractive choice for the production of ventilated façade systems. To attain the goal of a lightweight façade with large spans and without bracing stud-frame-systems, sandwich panels with two thin TRC-facings and a core of rigid polyurethane foam have been developed at RWTH Aachen University. Within a compact section, this slender building envelope provides a capable load-bearing behavior, superior heat insulation and fire resistance as well as a sufficient sound insulation. In the paper, the investigated production methods, the test results of sandwich members loaded by bending and shear forces, tests on sound insulation and fire resistance, as well as the deduced calculation models are presented.
10.14359/20153
SP251-04
R. Mott and W. Brameshuber
Many regions in Germany show a rising groundwater level. Hence, the load case of buildings concerned changes from non-pressing to pressing water. Residential buildings not designed for the load case of pressing water have to be refitted. Conventional sealing methods are often associated with high complexity and high costs as well as the loss of living space. Furthermore, in many cases, they do not consider the additional static load of pressing water at all. This paper presents a newly developed, subsequently applied sealing against pressing water. It is made of textile-reinforced concrete. Using this composite material, it is possible to produce a sealing system with a wall thickness of about 30 to 35 mm (1.18 to 1.38 in.). During the production of an exhibit wall, it became apparent that the spraying technique is an adequate and practicable method to produce a subsequent sealing of textile reinforced concrete. Initial observations of the wall subjected to hydrostatic pressure reveal the application potential of this construction.
10.14359/20150
SP251-05
B.-G. Kang, J. Hannawald and W. Brameshuber
The tensile load carrying behavior under cyclic loading of filaments made of alkali-resistant glass, which is the basic component of the textile reinforcement used for textile reinforced concrete, has been analyzed. Therefore, tensile tests under cyclic loading at four different stress levels were carried out. A damage accumulation, which led in some cases to a failure of the specimens during the cyclic loading, could be observed. This motivated to introduce a strength degradation model. A calibration of the model parameters on the experimental data was performed using an optimization method. A statistical analysis was carried out beforehand, to estimate the initial tensile strengths of the specimens, which were needed for the calibration.
10.14359/20151
SP251-06
J. Hegger, S. Voss, and A. Scholzen
At present there is a rising interest of architects and engineers in the application of textile-reinforced concrete (TRC) as a construction material. Filigree, self-supporting and ventilated façade systems are state of the art in the application of TRC. In current investigations, potentials for lightweight structural members are developed. The required models for a secure design of structural members are deduced within the framework of the research activities in the collaborative research center 532 at RWTH Aachen University [1]. The article outlines fundamental research results as well as their realization in first applications.
10.14359/20152
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer