ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 11 Abstracts search results
Document:
SP255
Date:
October 1, 2008
Author(s):
Editor: V.K.R. Kodur / Joint ACI-TMS Committee 216
Publication:
Symposium Papers
Volume:
255
Abstract:
The aim of this SP is to present some of the latest research in the area of fire performance of concrete. The ten papers in this SP present state-of-the-art review and results from both experimental and numerical studies on the various aspects ranging from material properties at elevated temperatures to optimum solutions for overcoming spalling in HSC concrete members exposed to fire. Fire represents one of the most severe conditions encountered during the lifetime of a structure and, therefore,the provision of appropriate fire safety measures for structural members is a major safety requirement in building design. The basis for this requirement can be attributed to the fact that, when other measures for containing the fire fail, structural integrity is the last line of defense. Generally, concrete structural members exhibit good performance under fire situations. In most cases, structural members used to be made of conventional concretes, often referred to as normal-strength concrete (NSC). However, in the last two decades, there have been significant advances in concrete material technology. These advances have lead to new concrete types, often referred to as high-strength or high-performance concrete. The construction industry has shown great interest in the use of high-strength concrete (HSC) due to improvements in structural performance, such as high strength and durability, that it can provide, compared to conventional NSC. HSC is typically characterized by high strength, good workability, and durability. Studies show, however, that the performance of HSC is different from that of NSC, and may not exhibit the same level of performance in fire. Furthermore, the spalling of concrete under fire conditions is one of the major concerns in HSC. Fire-induced spalling in concrete has been observed under laboratory and real fire conditions in HSC specimens. Spalling is theorized to be caused by the buildup of pore pressure during heating. HSC is believed to be more susceptible to this pressure buildup because of its low permeability compared to NSC. Data from various studies show that predicting the fire performance of HSC, in general, and spalling, in particular, is very complex because it is affected by a number of factors. In the aftermath of the September 11 terrorist attacks on the World Trade Center and the Pentagon, several issues relating to building performance under extreme conditions (structural, material, fire) have come to the forefront. Since intense fires played a major role in the collapse of the Twin Towers of the World Trade Center and other buildings, the issue of material performance under extreme fire conditions has attracted significant attention from the research and engineering community. Consequently, a number of new research programs in structural fire safety area are leading to new design provisions and solutions for enhancing the fire resistance performance of steel structures.
DOI:
10.14359/20093
SP255-01
L.T. Phan
Effects of elevated temperature exposure and various factors, including water-to-cementitious material ratios (w/cm), curing conditions, heating rates, test methods, and polypropylene (PP) fibers, on (1) pore pressure buildup and potential for explosive spalling and on (2) degradation of mechanical properties in normal-strength (NSC) and high-strength concrete (HSC) are presented. Degradations of mechanical properties were measured using 100 x 200 mm cylinders, heated to temperatures of up to 600 °C at 5 °C/min, and compared with results of other studies and existing codes. Pore pressures were measured using 100 x 200 x 200 mm blocks, heated to 600 °C at 5 °C/min and 25 °C/min. Experimental evidences of the complex, temperature-dependant moisture transport process that significantly influenced pore pressure and temperature developments are described.
10.14359/20217
SP255-09
F. Ali and A. Nadjai
One of the new techniques to reduce explosive spalling in concrete subjected to fire is to add a cocktail of polypropylene fibers and steel fibers into the concrete mixture. This method is still in the early stages of development and requires more research to investigate the efficiency of introducing such a combination of fibers in reducing explosive spalling in fire. The purpose of this paper is to present the results of an experimental study conducted to investigate the performance of reinforced concrete columns containing steel and polypropylene fibers under different loadings and subjected to severe fire conditions. Two loading levels were investigated representing 0.6 and 0.76 of the ultimate strength limits of ACI 318. Columns containing polypropylene (1 kg/m3) and steel fibers (80kg/m3) showed a higher fire resistance by an average factor of 1.76 compared to columns containing PP fibers (1 kg/m3) only. The paper also assesses the effect of adding steel and polypropylene fibers on the severity of concrete explosion under fire. Measurements of axial displacements and concrete temperatures are presented in this paper. The paper compares the obtained experimental values of the axial displacements with theoretical values calculated using a previously developed simple approach.
10.14359/20225
SP255-10
S.S. Szoke
Adequate information may not be readily available to justify the development of alternative methods for evaluating and predicting the performance of concrete exposed to fire and elevated temperatures. The recent trends to use alternatives to ASTM E119 such as small-scale testing and computer models is driven primarily by the costs associated with ASTM E119 tests and a desire by some to be able to model the performance of concrete in actual fires. Increased measurement and reporting may be needed to validate these alternative test methods, and analytical computer models and simulations methods to correlate the results of alternative testing techniques and models are needed. These considerations are becoming increasingly more important due to recent efforts to refine existing and develop new methods for the design of buildings to resist fire, including being able to undergo total burnout without collapse.
10.14359/20226
SP255-07
K.J.N. MacLean, L.A. Bisby, and C.C. MacDougall
Unbonded post-tensioned (PT) concrete slabs have been widely used in Canada and the United States since the 1960s, as they allow increased span-to-depth ratios and excellent control of deflections compared to non-prestressed reinforced concrete flexural members. The satisfactory fire performance of unbonded, PT concrete slabs in North America was established by a series of standard fire tests performed in the United States during the 1960s. However, there is a paucity of data on the effect of elevated temperatures on cold-drawn prestressing steel, both in terms of post-fire residual mechanical properties and high-temperature stress relaxation, which can lead to significant prestress loss both during and after a fire. To aid in the post-fire evaluation of PT concrete floors, a series of high-temperature residual tension tests on prestressing steel is presented, along with a second series of tests that illustrate the irrecoverable and significant loss of prestress force that may result from steel relaxation (creep) during a fire. A preliminary model is presented that can be used to predict the change in prestress force and allow for the computation of flexural capacity of a PT slab after a fire.
10.14359/20223
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer