ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 11 Abstracts search results
Document:
SP266-09
Date:
October 1, 2009
Author(s):
A. Sellier, E. Bourdarot, E. Grimal, S. Multon, and M. Cyr
Publication:
Symposium Papers
Volume:
266
Abstract:
Alkali silica reaction (ASR) causes premature and unrecoverable deteriorations of numerous civil engineering structures. ASR-expansions and induced cracking can affect the functional capacity of bridges and dams. Several hydraulic dams of Electricité de France (EDF) are concerned by ASR. Therefore, a behaviour model implemented in a finite element code has been developed in order to assess the safety level and the maintenance choices of these degraded structures. This approach has the particularity of modelling the ASR structural effects from the construction of the structure until today. It uses several ASR advancement variables, one for each aggregate size range of the affected concrete. These advancement variables depend on both the saturation degree and the temperature in the dam. The difficulty of using a classical residual expansion test on core samples to fit the model is pointed out, particularly when the swelling rate is slow due to low alkali content in the concrete. Thus, the authors propose an original approach combining additional tests and physical modelling to assess the chemical advancement of the ASR for each aggregate size of the affected concrete. Only the chemical advancement, which is a normalized variable linked to the residual reactive silica content, is measured in laboratory. The concrete residual potential expansion is not measured on laboratory tests but fitted through an inverse analysis based on a finite element structural calculation.
DOI:
10.14359/51663276
SP266-10
K. Sobolev and A. Amirjanov
A simulation algorithm was developed for modeling the dense packing of large assemblies of particulate materials (in the order of millions). These assemblies represent the real aggregate systems of portland cement concrete. Two variations of the algorithm are proposed: Sequential Packing Model and Particles Suspension Model. A developed multi-cell packing procedure as well as fine adjustment of the algorithm’s parameters were useful to optimize the computational resources (i.e., to realize the trade-off between the memory and packing time). Some options to speed up the algorithm and to pack very large volumes of spherical entities (up to 10 millions) are discussed. The described procedure resulted in a quick method for packing of large assemblies of particulate materials. The influence of model variables on the degree of packing and the corresponding distribution of particles was analyzed. Based on the simulation results, different particle size distributions of particulate materials are correlated to their packing degree. The developed algorithm generates and visualizes dense packings corresponding to concrete aggregates. These packings show a good agreement with the standard requirements and available research data. The results of the research can be applied to the optimal proportioning of concrete mixtures.
10.14359/51663277
SP266-07
K. Raoufi, T. Nantung, and J. Weiss
Stresses develop in portland cement concrete pavement at early ages when volume changes associated with hydration reactions, moisture loss, and temperature variations are restrained. Saw-cuts are placed in concrete pavements to provide a weakened plane that enables cracks to form as intended, thereby relieving developed residual stresses. Although the idea of creating a weakened plane by saw-cutting is relatively straight forward, practically determining the timing and depth of saw-cut can be complicated in field construction. This study uses a finite element model (FEMMASSE) to evaluate influence of saw-cut timing on cracking behavior of concrete pavements. The model considers the influence of ambient temperature, cooling effect of wind, and time of casting. It is shown that the saw-cutting time window was reduced as ambient temperature was increased. Higher wind speeds influence the saw-cutting time window to a lesser degree at high ambient temperatures than they do at lower ambient temperatures. It was also shown that the time of casting influences the saw-cutting time window and it needs to be considered in estimating the saw-cutting time window especially at high ambient temperatures.
10.14359/51663274
SP266-08
E. Grimal, A. Sellier, S. Multon, E. Bourdarot
The alkali aggregate reaction (AAR) is affecting numerous civil engineering structures and is responsible for unrecoverable expansion and cracking which can affect their functional capacity. In order to control the safety level and the maintenance cost of its hydraulic dams, Electricité de France (EDF) has to get a better understanding and a better prediction of the expansion phenomena. In this context, EDF is developing a numerical modelling based on the finite element method in order to assess the mechanical behavior of degraded structures. Obtaining a good prediction of expansive phenomena requires the identification and realistic modelling of the underlying physical, chemical and mechanical phenomena. The model takes into account the mechanical damage, the creep of concrete and the stress induced by the formation of AAR gel. Coupling between the different phenomena (creep, AAR and anisotropic damage) are taken into account through a rheological modelling. First , experimental results obtained on concrete cylinders and beams affected by AAR are simulated to verify whether the model can describe the behavior of degraded structures.
10.14359/51663275
SP266-05
J.L. Poole and K.A. Riding
Early-age cracking can reduce the service life of reinforced concrete structures by providing a path for the ingress of moisture. This cracking is caused by a complex interaction among concrete material properties, construction methods, and the environment, especially during the early age curing period. In order to prevent early age cracking, the concrete mixture and construction methods must be complementary and chosen with care. Early age concrete simulations can be used to minimize the risk of cracking by optimizing the materials and construction techniques for the local environmental conditions. These simulations are rarely performed however, because of the great expense and time needed to quantify the early age concrete mechanical properties (modulus, tensile strength, creep, coefficient of thermal expansion, etc.). Recent breakthroughs in material science and concrete technology have enabled the development of needed early-age concrete material property models. An early age temperature development and thermal stress simulation tool named ConcreteWorks was recently completed that allows engineers and contractors to quickly optimize concrete construction with reduced laboratory testing. ConcreteWorks includes several material behavior models that were developed to eliminate the need for expensive, specialized testing. This paper presents the development of ConcreteWorks, along with examples of its application on recently completed construction projects. These case studies illustrate how materials science modeling techniques can be simplified for the end user needs.
10.14359/51663272
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer