Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 14 Abstracts search results
Document:
SP339
Date:
March 1, 2020
Author(s):
Jeff Dragovich, Mary Beth Hueste, Brian Kehoe, and Insung Kim
Publication:
Symposium Papers
Volume:
339
Abstract:
Performance-Based Seismic Design (PBSD) of reinforced concrete buildings has rapidly become a widely used alternative to the prescriptive requirements of building code requirements for seismic design. The use of PBSD for new construction is expanding, as evidenced by the design guidelines that are available and the stock of building projects completed using this approach. In support of this, the mission of ACI Committee 374, Performance-Based Seismic Design of Concrete Buildings, is to “Develop and report information on performance-based seismic analysis and design of concrete buildings.” During the ACI Concrete Convention, October 15-19, 2017, in Anaheim, CA, Committee 374 sponsored three technical sessions titled “Performance-Based Seismic Design of Concrete Buildings: State of the Practice.” The sessions presented the state of practice for the PBSD of reinforced concrete buildings. These presentations brought together the implementation of PBSD through state-of-the-art project examples, analysis observations, design guidelines, and research that supports PBSD. This special publication reflects the presentations in Anaheim. Consistent with the presentation order at the special sessions in Anaheim, the papers in this special publication are ordered in four broad categories: state-of-the-art project examples (papers 1-5), lateral system demands (papers 6-8), design guidelines (papers 9-10), and research and observed behavior (papers 11-13). On behalf of Committee 374, we wish to thank each of the authors for sharing their experience and expertise with the session attendees and for their contributions to this special publication.
DOI:
10.14359/51725817
SP-339_07
Tom C. Xia and Doug Lindquist
Performance based seismic design (PBSD) has been widely used for tall buildings as a code alternative design method for concrete shear wall structures. However, most PBSD studies are done for buildings taller than 240’ (73 m). Very few studies have been done for buildings shorter than 240’ (73 m) because PBSD is not required for buildings under 240’ (73 m). It is unclear if and how the shear demand increases observed in typical PBSD analysis should be applied to buildings shorter than 240’ (73 m). This study includes two buildings in the Seattle area that are designed per current codes. The study compares the shear demands predicted by the elastic analysis method with the demands predicated by the nonlinear time history analysis used in PBSD method. The intent of this study is to examine the merits of the new Seattle requirement using a factor to amplify the shear demand for buildings designed at code level and for the building height in the range of 160’ (48.8 m) to 240’ (73 m). It also explores the proper factor to be used in ACI 318 to determine the shear wall capacity.
10.14359/51724698
SP-339_06
Drew A. Kirkpatrick, Leonard M. Joseph, J. Ola Johansson, and C. Kerem Gulec
The distribution of forces through floor diaphragms is critical to the overall behavior and performance of buildings during both wind and seismic events. Simplified methods commonly employed by design engineers establish approximate magnitudes and distributions of inertial and transfer forces within floor diaphragms. Such methods can be appropriate for regular low-rise buildings without significant transfer forces. However, for design of complex structures with large stiffness discontinuities in vertical or horizontal directions, a more detailed investigation and modeling of diaphragm behavior is usually required. Common situations in high-rise projects include a tower stack meeting a podium base with supplemental shear walls and a tower stack meeting a grade-level slab enclosed by basement walls. Large diaphragm transfer forces typically occur at these levels of abrupt stiffness changes. Using examples from recent projects and parametric studies following performance-based seismic design (PBSD) principles, this paper describes the use of strut-and-tie models in commercially available software (PERFORM-3D) to provide a better understanding of complex diaphragm behavior. Results can aid the designer in making decisions regarding floor thickness and reinforcing layout, including at chords and collectors. While the need for enhanced modeling techniques and understanding of diaphragm behavior has been highlighted by the increased use of PBSD, the findings presented in this paper may be applicable to projects based on traditional (code-based) approaches as well.
10.14359/51724694
SP-339_05
Sugeng Wijanto, Nelson M. Angel, José I. Restrepo, and Joel P. Conte
The rapid development of tall building construction has taken place in Indonesia over the last decade, especially in its capital, Jakarta. Reinforced concrete has been the preferred material of choice used for these buildings because it is economical and is easily handled by local contractors. Along with this rapid development, the Indonesian codes for structural design practices have experienced major changes, following the latest development of USA building design codes and performance-based design guidelines, especially those related to seismic design. This paper describes the latest seismic code in Indonesia and presents the state-of-the-practice for the design of tall buildings there. It also discusses the use of performance-based seismic design as an alternative method of design, considering the risk-targeted maximum and service earthquakes, in the structural design of a tall residential tower in Jakarta.
10.14359/51724693
SP-339_04
Mark Sarkisian, Eric Long, and David Shook
Performance based seismic design (PBSD) has created new opportunities for enhanced performance, improved cost efficiencies, and increased reliability of tall buildings. More specifically, flexibility with initial design methods and the utilization of response history results for design, not just verification, have emerged. This paper explores four refined design methods made available by the employment PBSD to influence seismic performance and identify areas of importance. First is the initial proportioning of reinforcement to encourage plastic hinge behavior at specific locations. Second is the initial proportioning of wall thicknesses and reinforcements to encourage a capacity-based design approach for force-controlled actions. Third is the mapping of observed strain demands in shear walls to specific detailing types such as ordinary and special boundary zones. Fourth is an efficient envelope method for the design of foundations. Through these design methods, initial proportioning can be conducted in a more refined way and targeted detailing can result in cost savings. A case study of a recently designed high-rise residential building demonstrates that cost savings can be achieved with these methods.
10.14359/51724692
Results Per Page 5 10 15 20 25 50 100