Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 16 Abstracts search results
Document:
SP-350_06
Date:
November 1, 2021
Author(s):
Bhatt, P.P. and Sharma, N.
Publication:
Symposium Papers
Volume:
350
Abstract:
This paper presents the development of a data-driven deep neural network (DNN) for evaluating the fire resistance time of fiber-reinforced polymer (FRP) strengthened concrete beams. The model was trained for a scaled and unscaled dataset. For this, a comprehensive dataset of FRP-strengthened concrete beams with different geometry, insulation configuration, applied loading, and material characteristics was compiled. The DNN structure was selected after an extensive hyperparameter tuning in conjunction with ten-fold cross-validation scheme. The effect of different input parameters on the fire resistance prediction was analyzed. The DNN model developed using scaled data provides a reasonably accurate estimate, of the fire resistance of FRP-strengthened concrete beams with an R2 value of almost 92%. The developed model is further utilized to evaluate the impact of different parameters on fire resistance prediction for FRP-strengthened concrete beams. Results from the analysis indicate the thermal properties of insulation play an important role in determining the fire resistance of FRP-strengthened concrete beams.
DOI:
10.14359/51734313
SP-350_07
Vitaliy V. Degtyarev
The bond between reinforcing bars and concrete is an important property that determines the performance of reinforced concrete structures. Accurate prediction of the bond strength is essential for ensuring the safety and economy of the structures. This paper proposes an artificial neural network for predicting the bond strength between straight deformed reinforcing bars and concrete under tensile load. The neural network was trained using a large dataset of test results from the ACI Committee 408 database. A robust ten-fold cross-validation method was employed for evaluating network performance and finding optimal network parameters. Hyperparameter tuning was carried out to establish the optimal network hyperparameters. The relative impact of the neural network input parameters on the bond strength was evaluated using the SHAP method. The developed neural network with the optimal hyperparameters shows a good agreement with the test results. Its accuracy exceeds the accuracy of the descriptive equations.
10.14359/51734314
SP-350_08
José A. Guzmán-Torres, Francisco J. Domínguez-Mota, Gerardo Tinoco-Guerrero, Elia M. Alonso-Guzmán, and Wilfrido Martínez-Molina
Artificial Intelligence has one of the most efficient methods for solving engineering and materials problems because of its impressive performance and can reach higher accuracy. The Deep Learning theory is an approach based on Deep Neural Networks for establishing numerical analysis and value predictions. This paper proposes a fresh approach, using a Deep Learning model for predicting the compressive strength in a particular concrete just based on non-destructive test measurements (NDTs). The model proposed is an attractive alternative to estimate the resistance of compressive strength in any structure, just taking data like ultrasonic pulse velocity, electrical resistivity, and resonance frequencies. The present work employs data science techniques to find the correlation values between the NDTs and the compressive strength effort and realized broad numerical exploration about concrete performance. An amount of 285 specimens of concrete were monitored during this research. The model proposed contains 600 neurons and uses a Rectified Linear Unit and Sigmoid as activation functions where the NDTs were established as the input data. The dataset was segmented into two groups: train and test. In order to evaluate the model, the authors tested it in a validation set with different concrete features, achieving an accuracy of 94%.
10.14359/51734315
SP-350_09
William R. Locke, Stefani C. Mokalled, Omar R. Abuodeh, Laura M. Redmond, and Christopher S. McMahan
This research employs a novel Bayesian estimation technique to perform model updating on a coupled vehicle-bridge finite element model (FEM) for the purposes of classifying damage on a reinforced concrete bridge. Unlike existing Artificial intelligence (AI) techniques, the proposed methodology makes use of an embedded FEM, thus reducing the parameter space while simultaneously guiding the Bayesian model via physics-based principles. To validate the method, bridge response data is generated from the vehicle-bridge FEM given a set of “true” parameters and the bias and standard deviation of the parameter estimates are analyzed. Additionally, the mean parameter estimates are used to solve the FEM, and the results are compared against results obtained for “true” parameter values. Furthermore, a sensitivity study is conducted to demonstrate methods for properly formulating model spaces to improve the Bayesian estimation routine. The study concludes with a discussion highlighting factors that need to be considered when using experimental data to update vehicle-bridge FEMs with the Bayesian estimation technique.
10.14359/51734316
SP-350_10
Roya Solhmirzaei, Hadi Salehi, and Venkatesh Kodur
A computational framework employing machine learning (ML) is applied to predict failure mode of ultra-high-performance concrete (UHPC) beams. For this purpose, results from a number of tests on UHPC beams with different geometric and loading configurations and material characteristics are collected and utilized as an input to the ML framework. Results from numerical studies are not included in the data set due to the fact that they are highly dependent upon the adopted material models, meshing practices, as well as other assumptions used in modeling. Artificial neural network is used to predict the failure mode of the UHPC beams. Results indicate that the proposed ML framework is capable of predicting failure mod of UHPC beams with varying reinforcement and configurations, and can be considered for use in design applications. This paper aims to promote the applicability of ML for a practical engineering problem, detecting structural response of UHPC beams.
10.14359/51734317
Results Per Page 5 10 15 20 25 50 100