International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 53 Abstracts search results

Document: 

SP-360_01

Date: 

March 1, 2024

Author(s):

Junrui Zhang, Enrique del Rey Castillo, Ravi Kanitkar, Aniket D Borwankar, and Ramprasath R

Publication:

Symposium Papers

Volume:

360

Abstract:

A systematic literature review was conducted on pure tension strengthening of concrete structures using fiber-reinforced polymer (FRP), specifically for larger FRP tie applications. This work yielded a dataset of 1,627 direct tension tests, and highlighted the limitation of existing studies on studying thick and long FRP ties, which are typical in real construction scenarios. To overcome this shortcoming, 51 single lap shear tests were conducted on thicker and longer FRP ties, with the dimensions being 0.5 to 6 mm [0.02 to 0.24 in.] thickness, and 300 to 1,524 mm [12 to 60 in.] long. The critical parameters under consideration were concrete compressive strength, FRP thickness, and bond length. The findings demonstrate that thicker and therefore stiffer FRP ties have higher debond force capacity, while longer ties exhibit greater post-elastic deformation capacity but do not affect the debond force capacity. Concrete had a limited effect on either debond force or deformation capacity. A strength model is proposed for FRP systems under axial pure tension, which aligns well with both the published and tested results. This paper focuses on the development of design guidelines and codes to predict the debond strain for EB-FRP systems incorporating thicker and longer FRP ties, aiming to enhance the applicability of FRP to real-world construction scenarios.

DOI:

10.14359/51740613


Document: 

SP-360_02

Date: 

March 1, 2024

Author(s):

John J. Myers

Publication:

Symposium Papers

Volume:

360

Abstract:

The American Concrete Institute (ACI) 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars linearly reduces the bar stress and thereby pull-out capacity of FRP bars to zero from an embedment length at 20 bar diameters (db) or less. Most experimental research and data examine the development length of various FRP bars at longer, more traditional, embedment lengths. A database was created from select available data in literature to compare to empirical standards. This investigation examines the bond performance of short embedded FRP bars into concrete considering a pull-out failure mode to expand the understanding of short embedded FRP bars into concrete. Based upon the database collected, for the glass fiber-reinforced polymer (GFRP) rebars, the current 440.1R appear quite conservative. For the basalt fiber-reinforced polymer (BFRP) rebar database collected, the current ACI 440.1R-15 provisions appear unconservative for a statistically significant number of the specimen test results within the database. In the case of the carbon fiber-reinforced polymer (CFRP) database, which is quite limited, the data appears to develop considerably less bond strength than the current 440.1R provisions might suggest which requires deeper investigation for the case of short embedment length bonded CFRP bars.

DOI:

10.14359/51740614


Document: 

SP-360_03

Date: 

March 1, 2024

Author(s):

Abubakar S. Ishaq, Maria M. Lopez, Charles E. Bakis, and Yoseok Jeong

Publication:

Symposium Papers

Volume:

360

Abstract:

This study evaluates the bond performance of concrete epoxy bonds using an image segmentation-based image processing technique. The Concrete Epoxy Interface (CEI) plays a crucial role in the structural performance of FRP-repaired concrete as it transfers stresses from the concrete to the epoxy. By employing the image segmentation technique, the performance of the CEI is assessed through the ratio of Interfacial Failure (IF) to other failure types, namely cohesive failure in Epoxy (CE) and Cohesive cracks in Concrete (CC). The effects of sustained loading duration on CEI bond performance are quantitatively analyzed using 21 single-lap shear (SLS) specimens and 28 notched 3-Point Bending (3PB) specimens. The findings highlight vital conclusions: CE is the least failure mode in SLS and 3PB specimens. In contrast, CC is the predominant failure mode, indicating the susceptibility of the concrete substrate in FRP-repaired concrete. Moreover, IF generally increases with longer sustained loading durations in 3PB specimens but decreases with increased loading duration in SLS specimens. The study also demonstrates the effectiveness of the image segmentation approach in evaluating CEI performance in 3PB specimens, where color distinguishes epoxy, FRP, and concrete substrate.

DOI:

10.14359/51740615


Document: 

SP-360_39

Date: 

March 1, 2024

Author(s):

Ju-Hyung Kim and Yail J. Kim

Publication:

Symposium Papers

Volume:

360

Abstract:

This paper presents a new methodology for characterizing the failure mode of structural walls reinforced with glass fiber reinforced polymer (GFRP) bars. An analytical model is used to derive a non-dimensional failure determinant function, which is validated against existing test results. The function involves geometric attributes (wall length, wall height, and boundary element size), reinforcement ratios (horizontal and vertical), and material properties (compressive strength of concrete and tensile strength of GFRP bars). According to the determinant function, structural walls fail in flexure when a high aspect ratio is associated with a relatively low reinforcement ratio in the boundary element. The proposed methodology and design recommendations provide valuable guidance for practitioners dealing with GFRP-reinforced concrete walls.

DOI:

10.14359/51740651


Document: 

SP-360_40

Date: 

March 1, 2024

Author(s):

Lin S-H, Kim I, Borwankar A, Kanitkar R, Hagen G, Shapack G

Publication:

Symposium Papers

Volume:

360

Abstract:

Fiber reinforced polymers (FRP) are commonly used to seismically retrofit concrete structural walls. Limited design guidance for the seismic application of FRP strengthening is currently available to designers in guidelines such as ACI PRC-440.2-17 or standards like ASCE/SEI 41-17. This paper presents the description and results of an experimental effort to investigate the effectiveness of FRP retrofitted concrete walls. The specimen wall thickness was either 6 in or 12 in, which represents a typical range of wall thickness seen in older buildings. To better reflect the most common applications seen in the industry, the walls were retrofitted with FRP, and anchored with fiber anchors only on one side of the wall. The study demonstrates that the effectiveness of FRP is reduced as the wall thickness increases and that the FRP must be anchored to the wall for any tangible benefit. The results are used to assess the current provisions in ACI PRC-440.2-17 and ASCE/SEI 41-17. It is apparent that additional testing is required to better understand the complexities involved in the FRP strengthening of shear walls and such testing is scheduled for the near future.

DOI:

10.14359/51740652


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer