Title:
Assessment of Urban Building Complexes Subjected to Natural and Man-Made Hazards
Author(s):
Malte von Ramin, Alexander Stolz, Oliver Millon, and Tassilo Rinder
Publication:
Symposium Paper
Volume:
309
Issue:
Appears on pages(s):
1-20
Keywords:
Hydrocode, load redistribution, non-linear spring model, progressive collapse, resilience, rigid-beam model, risk analysis
DOI:
10.14359/51689098
Date:
6/1/2016
Abstract:
The need for the assessment of structures subjected to natural and man-made hazard scenarios is steadily increasing. The analysis of a building structure with regards to potential progressive collapse as the result of a single hazardous event requires the realistic assessment of the residual capacity of structural members after the initial event. Common current building codes provide little guidance in the establishment of relevant loading scenarios and the assessment of structural members subjected to extreme loads. Using extreme loading from impact or close-in detona-tions as an example, a design path is outlined describing (1) the establishment of relevant hazard scenarios based on risk analysis, (2) the analysis of structural members subjected to high speed dynamic loading using hydrocodes, and (3) employing an efficient rigid-body spring model to analyze the entire structure subjected to potential progressive collapse. After initial member failure, the utilization of the remaining structural elements as established under regular dead and live loads is compared to the newly required capacity after the event. The degree of utilization of the remain-ing structural members after an event is amplified by additional loads redistributed from the failed member(s) and the damage caused by the initial event.