Title:
Effect of Element Distribution on Strength in Fly Ash Geopolymers
Author(s):
Chamila Gunasekara, David W. Law, Sujeeva Setunge, Iko Burgar, and Robert Brkljaca
Publication:
Materials Journal
Volume:
114
Issue:
5
Appears on pages(s):
795-808
Keywords:
compressive strength; element distribution; fly ash; geopolymer; porosity
DOI:
10.14359/51689779
Date:
9/1/2017
Abstract:
This study evaluates the influence of the elemental distribution in the fly ash particles and their impact on phase formation and compressive strength of five low-calcium fly ash geopolymers. The degree of geopolymerization in each geopolymer system was assessed by FT-IR and solid state 27Al MAS-NMR analysis. The corresponding pore volume changes were investigated by mercury intrusion porosimetry (MIP). The uniformity of the distribution of SiO2 and Al2O3 in the fly ash was observed to directly influence the dissolution of the amorphous surface layer in the initial geopolymerization process and control aluminosilicate gel precipitation and gel-phase creation. The results showed that the higher the uniformity of distribution (coupled with the stable conversion of aluminium from octahedral to tetrahedral coordination), the higher the aluminium amalgamation with silicates. The result of this is the production of a three-dimensional (3-D) polysialatesiloxo (Si-O-Al-O-Si) polymeric gel structure with high rigidity and stability, which in turn results in higher compressive strength. It was also observed that an increase of meso-porosity in geopolymer phase formation coupled with a cumulative pore volume below 1000 nm (3.937 × 10–5 in.) is a good indicator of the degree of geopolymerization.
Related References:
1. Nath, P., and Sarker, P. K., “Use of OPC to Improve Setting and Early Strength Properties of Low Calcium Fly Ash Geopolymer Concrete Cured at Room Temperature,” Cement and Concrete Composites, V. 55, Jan. 2015, pp. 205-214. doi: 10.1016/j.cemconcomp.2014.08.008
2. Law, D. W.; Adam, A. A.; Molyneaux, T. K.; Patnaikuni, I.; and Wardhono, A., “Long Term Durability Properties of Class F Fly Ash Geopolymer Concrete,” Materials and Structures, V. 48, No. 3, 2015, pp. 721-731. doi: 10.1617/s11527-014-0268-9
3. Chindaprasirt, P.; Thaiwitcharoen, S.; Kaewpirom, S.; and Rattanasak, U., “Controlling Ettringite Formation in FBC Fly Ash Geopolymer Concrete,” Cement and Concrete Composites, V. 41, Aug. 2013, pp. 24-28. doi: 10.1016/j.cemconcomp.2013.04.009
4. Sturm, P.; Gluth, G.; Brouwers, H.; and Kühne, H.-C., “Synthesizing One-Part Geopolymers from Rice Husk Ash,” Construction and Building Materials, V. 124, Oct, 2016, pp. 961-966. doi: 10.1016/j.conbuildmat.2016.08.017
5. Fernández-Jiménez, A., and Palomo, A., “Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator,” Cement and Concrete Research, V. 35, No. 10, 2005, pp. 1984-1992. doi: doi10.1016/j.cemconres.2005.03.003
6. Oh, J. E.; Jun, Y.; and Jeong, Y., “Characterization of Geopolymers from Compositionally and Physically Different Class F Fly Ashes,” Cement and Concrete Composites, V. 50, July 2014, pp. 16-26. doi: 10.1016/j.cemconcomp.2013.10.019
7. Gluth, G.; Lehmann, C.; Rübner, K.; and Kühne, H.-C., “Geopolymerization of a Silica Residue from Waste Treatment of Chlorosilane Production,” Materials and Structures, V. 46, No. 8, 2013, pp. 1291-1298. doi: 10.1617/s11527-012-9972-5
8. Diaz-Loya, E. I.; Allouche, E. N.; and Vaidya, S., “Mechanical Properties of Fly-Ash-Based Geopolymer Concrete,” ACI Materials Journal, V. 108, No. 3, May-June 2011, pp. 300-306.
9. Diaz, E. I.; Allouche, E. N.; and Eklund, S., “Factors Affecting the Suitability of Fly Ash as Source Material for Geopolymers,” Fuel, V. 89, No. 5, 2010, pp. 992-996. doi: 10.1016/j.fuel.2009.09.012
10. Sathonsaowaphak, A.; Chindaprasirt, P.; and Pimraksa, K., “Workability and Strength of Lignite Bottom Ash Geopolymer Mortar,” Journal of Hazardous Materials, V. 168, No. 1, 2009, pp. 44-50. doi: 10.1016/j.jhazmat.2009.01.120
11. Chindaprasirt, P.; Chareerat, T.; and Sirivivatnanon, V., “Workability and Strength of Coarse High Calcium Fly Ash Geopolymer,” Cement and Concrete Composites, V. 29, No. 3, 2007, pp. 224-229. doi: 10.1016/j.cemconcomp.2006.11.002
12. van Jaarsveld, J. G. S.; Van Deventer, J. S. J.; and Lukey, G. C., “The Characterisation of Source Materials in Fly Ash-Based Geopolymers,” Materials Letters, V. 57, No. 7, 2003, pp. 1272-1280. doi: 10.1016/S0167-577X(02)00971-0
13. Soutsos, M.; Boyle, A. P.; Vinai, R.; Hadjierakleous, A.; and Barnett, S. J., “Factors Influencing the Compressive Strength of Fly Ash Based Geopolymers,” Construction and Building Materials, V. 110, No. 1, 2016, pp. 355-368. doi: 10.1016/j.conbuildmat.2015.11.045
14. Chindaprasirt, P., and Chalee, W., “Effect of Sodium Hydroxide Concentration on Chloride Penetration and Steel Corrosion of Fly Ash-Based Geopolymer Concrete under Marine Site,” Construction and Building Materials, V. 63, No. 1, 2014, pp. 303-310. doi: 10.1016/j.conbuildmat.2014.04.010
15. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Brice, D. G.; Kilcullen, A. R.; Hamdan, S.; and van Deventer, J. S. J., “Influence of Fly Ash on the Water and Chloride Permeability of Alkali-Activated Slag Mortars and Concretes,” Construction and Building Materials, V. 48, Nov. 2013, pp. 1187-1201. doi: 10.1016/j.conbuildmat.2013.07.106
16. Chindaprasirt, P.; Chareerat, T.; Hatanaka, S.; and Cao, T., “High-Strength Geopolymer Using Fine High-Calcium Fly Ash,” Journal of Materials in Civil Engineering, ASCE, V. 23, No. 3, 2011, pp. 264-270. doi: 10.1061/(ASCE)MT.1943-5533.0000161
17. Gunasekara, C.; Law, D. W.; Setunge, S.; and Sanjayan, J. G., “Zeta Potential, Gel Formation and Compressive Strength of Low Calcium Fly Ash Geopolymers,” Construction and Building Materials, V. 95, No. 1, 2015, pp. 592-599. doi: 10.1016/j.conbuildmat.2015.07.175
18. Songpiriyakij, S.; Kubprasit, T.; Jaturapitakkul, C.; and Chindaprasirt, P., “Compressive Strength and Degree of Reaction of Biomass and Fly Ash Based Geopolymer,” Construction and Building Materials, V. 24, No. 3, 2010, pp. 236-240. doi: 10.1016/j.conbuildmat.2009.09.002
19. Ryu, G. S.; Lee, Y. B.; Koh, K. T.; and Chung, Y. S., “The Mechanical Properties of Fly Ash-Based Geopolymer Concrete with Alkaline Activators,” Construction and Building Materials, V. 47, No. 1, 2013, pp. 409-418. doi: 10.1016/j.conbuildmat.2013.05.069
20. Tennakoon, C.; Nazari, A.; Sanjayan, J. G.; and Sagoe-Crentsil, K., “Distribution of Oxides in Fly Ash Controls Strength Evolution of Geopolymers,” Construction and Building Materials, V. 71, Nov. 2014, pp. 72-82.
21. Criado, M.; Fernández-Jiménez, A.; de la Torre, A. G.; Aranda, M. A. G.; and Palomo, A., “An XRD Study of the Effect of the SiO2/Na2O Ratio on the Alkali Activation of Fly Ash,” Cement and Concrete Research, V. 37, No. 5, 2007, pp. 671-679. doi: 10.1016/j.cemconres.2007.01.013
22. AS 3582.1, “Supplementary Cementitious Materials for Use with Portland and Blended Cement, Part 1: Fly Ash,” Standards Australia, Sydney, Australia, 1998.
23. Gunasekara, C.; Law, D. W.; and Setunge, S., “Long Term Permeation Properties of Different Fly Ash Geopolymer Concretes,” Construction and Building Materials, V. 124, Oct. 2016, pp. 352-362. doi: 10.1016/j.conbuildmat.2016.07.121
24. AS 1012.9, “Method of Testing Concrete, Method 9: Determination of the Compressive Strength of Concrete Specimens,” Standards Australia, 1999.
25. Chen-Tan, N. W.; Van Riessen, A.; Ly, C. V.; and Southam, D. C., “Determining the Reactivity of a Fly Ash for Production of Geopolymer,” Journal of the American Ceramic Society, V. 92, No. 4, 2009, pp. 881-887. doi: 10.1111/j.1551-2916.2009.02948.x
26. Álvarez-Ayuso, E.; Querol, X.; Plana, F.; Alastuey, A.; Moreno, N.; Izquierdo, M.; Font, O.; Moreno, T.; Diez, S.; Vazquez, E.; and Barra, M., “Environmental, Physical and Structural Characterisation of Geopolymer Matrixes Synthesised from Coal Combustion Fly Ashes,” Journal of Hazardous Materials, V. 154, No. 1-3, 2008, pp. 175-183. doi: 10.1016/j.jhazmat.2007.10.008
27. Davidovits, J., “Geopolymer Chemistry and Sustainable Development. The Poly(sialate) Terminology: A Very Useful and Simple Model for the Promotion and Understanding of Green-Chemistry,” Geopolymer Conference, France, 2005, pp. 9-15.
28. De Silva, P.; Sagoe-Crenstil, K.; and Sirivivatnanon, V., “Kinetics of Geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, V. 37, No. 4, 2007, pp. 512-518. doi: 10.1016/j.cemconres.2007.01.003
29. Valcke, S. L.; Pipilikaki, P.; Fischer, H. R.; Verkuijlen, M. H.; and van Eck, E. R., “FT-IR and 29-Si-NMR for Evaluating Aluminum-Silicate Precursors for Geopolymers,” Materials and Structures, V. 48, No. 3, 2015, pp. 557-569. doi:10.1617/s11527-014-0432-2
30. Zhang, Z.; Wang, H.; and Provis, J. L., “Quantitative Study of the Reactivity of Fly Ash in Geopolymerization by FTIR,” Journal of Sustainable Cement-Based Materials, V. 1, No. 4, 2012, pp. 154-166. doi: 10.1080/21650373.2012.752620
31. Phair, J., and Van Deventer, J., “Effect of the Silicate Activator pH on the Microstructural Characteristics of Waste-Based Geopolymers,” International Journal of Mineral Processing, V. 66, No. 1-4, 2002, pp. 121-143. doi: 10.1016/S0301-7516(02)00013-3
32. MacKenzie, K. J., and Smith, M. E., Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials, Elsevier, Amsterdam, the Netherlands, 2002.
33. Duxson, P.; Fernández-Jiménez, A.; Provis, J.; Lukey, G.; Palomo, A.; and van Deventer, J., “Geopolymer Technology: The Current State of the Art,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 2917-2933. doi: 10.1007/s10853-006-0637-z
34. Tennakoon, C.; De Silva, P.; Sagoe-Crentsil, K.; and Sanjayan, J. G., “Influence and Role of Feedstock Si and Al Content in Geopolymer Synthesis,” Journal of Sustainable Cement-Based Materials, V. 4, No. 2, 2015, pp. 129-139. doi: 10.1080/21650373.2014.979264
35. Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; and Sanz, J., “The Role Played by the Reactive Alumina Content in the Alkaline Activation of Fly Ashes,” Microporous and Mesoporous Materials, V. 91, No. 1-3, 2006, pp. 111-119. doi: 10.1016/j.micromeso.2005.11.015
36. Sing, K. S., “Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984),” Pure and Applied Chemistry, V. 57, No. 4, 1985, pp. 603-619. doi: 10.1351/pac198557040603
37. Zheng, L.; Wang, W.; and Shi, Y., “The Effects of Alkaline Dosage and Si/Al Ratio on the Immobilization of Heavy Metals in Municipal Solid Waste Incineration Fly Ash-Based Geopolymer,” Chemosphere, V. 79, No. 6, 2010, pp. 665-671. doi: 10.1016/j.chemosphere.2010.02.018