Investigation of Reactivity of Fly Ash and Its Effect on Mixture Properties

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Investigation of Reactivity of Fly Ash and Its Effect on Mixture Properties

Author(s): Deborah Glosser, Antara Choudhary, O. Burkan Isgor, and W. Jason Weiss

Publication: Materials Journal

Volume: 116

Issue: 4

Appears on pages(s): 193-200

Keywords: durability; fly ash; mixture proportioning; pozzolanicity; reactivity; supplementary cementitious material; thermodynamic modeling

DOI: 10.14359/51716722

Date: 7/1/2019

Abstract:
The reactivity of fly ash can vary considerably when used as a supplementary cementitious material (SCM). This paper demonstrates a framework for a standard test method to quantify the maximum reactivity of fly ash. The test is based on mixing reagent-grade calcium hydroxide (CH) and fly ash in a 3:1 mass ratio and exposing the mixture to 0.5 M potassium hydroxide (KOH) solution. Isothermal calorimetry and thermogravimetric analysis (TGA) are used to measure heat release and CH consumption, respectively, which are done in conjunction with thermodynamic calculations, as a basis to characterize the maximum reactivity of the fly ash. Fifteen fly ashes were tested using the method, which revealed that the reactivities ranged from 33 to 75%. Thermodynamic modeling was used to demonstrate the effect of fly ash reactivity on the properties of blended OPC-fly ash mixtures with different fly ash replacement levels (0 to 80%) and at various reactivities (0 to 100%). It was shown that the reactivity of fly ash is a critical factor determining durability-related parameters of mixtures such as CH content, C-S-H type and content, and the pH of the pore solution.

Related References:

1. Thomas, M. D. A., “Optimizing the Use of Fly Ash in Concrete,” Portland Cement Association, Skokie, IL, 2007, 24 pp.

2. Shehata, M. H., and Thomas, M. D. A., “The Effect of Fly Ash Composition on the Expansion of Concrete due to Alkali-Silica Reaction,” Cement and Concrete Research, V. 30, No. 7, 2000, pp. 1063-1072. doi: 10.1016/S0008-8846(00)00283-0

3. Aboustait, M.; Kim, T.; Ley, M. T.; and Davis, J. M., “Physical and Chemical Characteristics of Fly Ash Using Automated Scanning Electron Microscopy,” Construction and Building Materials, V. 106, Mar. 2016, pp. 1-10. doi: 10.1016/j.conbuildmat.2015.12.098

4. Hogan, F., and Meusel, J., “Evaluation for Durability and Strength Development of a Ground Granulated Blast Furnace Slag,” Cement, Concrete and Aggregates, V. 3, No. 1, 1981, pp. 40-52. doi: 10.1520/CCA10201J

5. Lane, D. S., and Ozyildirum, H. C., “Evaluation of the Effect of Portland Cement Alkali Content, Fly Ash, Ground Slag, And Silica Fume on Alkali-Silica Reactivity,” Cement, Concrete and Aggregates, V. 21, No. 2, 1999, pp. 126-140. doi: 10.1520/CCA10426J

6. Lumley, J. S.; Gollop, R. S.; Moir, G. K.; and Taylor, H. F. W., “Degrees of Reaction of the Slag in Some Blends with Portland Cements,” Cement and Concrete Research, V. 26, No. 1, 1996, pp. 139-151. doi: 10.1016/0008-8846(95)00190-5

7. Thomas, M. D. A.; Scott, A.; Bremner, T.; Bilodeau, A.; and Donna, D., “Performance of Slag Concrete in Marine Environment,” ACI Materials Journal, V. 105, No. 6, Nov.-Dec. 2008, pp. 628-634.

8. Bleszynski, R.; Hooton, R. D.; Thomas, M. D. A.; and Rogers, C. A., “Durability of Ternary Blend Concrete with Silica Fume and Blast-Furnace Slag: Laboratory and Outdoor Exposure Site Studies,” ACI Materials Journal, V. 99, No. 5, Sept.-Oct. 2002, pp. 499-508.

9. Roy, D. M., and ldorn, G.M., “Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete,” ACI Journal Proceedings, V. 79, No. 6, Nov.-Dec. 1982, pp. 444-457.

10. Laldji, S.; Phithaksounthone, A.; and Tagnit-Hamou, A., “Synergistic Effect between Glass Frit and Blast-Furnace Slag,” ACI Materials Journal, V. 107, No. 1, Jan.-Feb. 2010, pp. 75-79.

11. Thomas, M. D. A., and Innis, F. A., “Effect of Slag on Expansion Due to Alkali Aggregate Reaction in Concrete,” ACI Materials Journal, V. 95, No. 6, Nov.-Dec. 1998, pp. 716-724.

12. Zeng, Q.; Li, K. F.; Fen-chong, T.; and Dangla, P., “Determination of Cement Hydration and Pozzolanic Reaction Extents For Fly-Ash Cement Pastes,” Construction and Building Materials, V. 27, No. 1, 2012, pp. 560-569. doi: 10.1016/j.conbuildmat.2011.07.007

13. Wang, X. Y., “Effect of Fly Ash on Properties Evolution of Cement Based Materials,” Construction and Building Materials, V. 69, 2014, pp. 32-40. doi: 10.1016/j.conbuildmat.2014.07.029

14. Fernández-Jiménez, A., and Palomo, A., “Characterisation of Fly Ashes. Potential Reactivity as Alkaline Cements,” Fuel, V. 82, No. 18, 2003, pp. 2259-2265. doi: 10.1016/S0016-2361(03)00194-7

15. Suraneni, P.; Jafari Azad, V.; Isgor, O. B.; and Weiss, W. J., “Deicing Salts and Durability of Concrete Pavements and Joints: Mitigating Calcium Oxychloride Formation,” Concrete International, V. 38, No. 4, Apr. 2016, pp. 48-54.

16. Jafari Azad, V., and Isgor, O. B., “A Thermodynamic Perspective on Admixed Chloride Limits of Concrete Produced with SCMs,” Chloride Thresholds and Limits for New Construction, SP-308, American Concrete Institute, Farmington Hills, MI, 2016, pp. 8.1-8.18.

17. Suraneni, P., and Weiss, J., “Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis,” Cement and Concrete Composites, V. 83, 2017, pp. 273-278. doi: 10.1016/j.cemconcomp.2017.07.009

18. Jafari Azad, V.; Suraneni, P.; Trejo, D.; Weiss, W. J.; and Isgor, O. B., “Thermodynamic Investigation of Allowable Admixed Chloride Limits In Concrete,” ACI Materials Journal, V. 115, No. 5, Sept. 2018, pp. 727-738.

19. ACI Committee 211, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91) (Reapproved 2009),” American Concrete Institute, Farmington Hills, MI, 2009, 38 pp.

20. Weiss, W. J.; Spragg, R. P.; Isgor, O. B.; Ley, M. T.; and Van Dam, T., “Toward Performance Specifications for Concrete: Linking Resistivity, RCPT and Diffusion Predictions Using the Formation Factor for Use in Specifications,” High Tech Concrete: Where Technology and Engineering Meet, D. Hordijk and M. Luković, eds., Springer, 2018, pp. 2057-2065.

21. Avet, F.; Snellings, R.; Diaz, A. A.; Ben Haha, M.; and Scrivener, K., “Development of a New Rapid, Relevant and Reliable (R-3) Test Method to Evaluate the Pozzolanic Reactivity of Calcined Kaolinitic Clays,” Cement and Concrete Research, V. 85, July 2016, pp. 1-11. doi: doi10.1016/j.cemconres.2016.02.015

22. Donatello, S.; Tyrer, M.; and Cheeseman, C. R., “Comparison of Test Methods to Assess Pozzolanic Activity,” Cement and Concrete Composites, V. 32, No. 2, 2010, pp. 121-127. doi: 10.1016/j.cemconcomp.2009.10.008

23. Snellings, R., and Scrivener, K. L., “Rapid Screening Tests for Supplementary Cementitious Materials: Past and Future,” Materials and Structures, V. 49, No. 8, 2016, pp. 3265-3279. doi: 10.1617/s11527-015-0718-z

24. Taylor-Lange, S. C.; Riding, K. A.; and Juenger, M. C. G., “Increasing the Reactivity of Metakaolin-Cement Blends Using Zinc Oxide,” Cement and Concrete Composites, V. 34, No. 7, 2012, pp. 835-847. doi: 10.1016/j.cemconcomp.2012.03.004

25. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Assessment of Pozzolanic Activity of Different Calcined Clays,” Cement and Concrete Composites, V. 37, Mar. 2013, pp. 319-327. doi: 10.1016/j.cemconcomp.2013.01.002

26. Shehata, M.; Thomas, M.; and Bleszynski, R., “The Effects of Fly Ash Composition on the Chemistry of Pore Solution in Hydrated Cement Pastes,” Cement and Concrete Research, V. 29, No. 12, 1999, pp. 1915-1920. doi: 10.1016/S0008-8846(99)00190-8

27. Beaudoin, J. J., and Ramachandran, V. S., Handbook of Analytical Techniques in Concrete Sciences and Technology, Elsevier, 2001, 1003 pp.

28. Scrivener, K. L.; Fullmann, A.; Gallucci, E.; Walenta, G.; and Bermejo, E., “Quantitative Study of Portland Cement Hydration by X-ray Diffraction/Rietveld Analysis and Independent Methods,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1541-1547. doi: 10.1016/j.cemconres.2004.04.014

29. Klimesch, D. S., and Ray, A., “DTA-TGA of Unstirred Autoclaved Metakaolin-Lime-Quartz Slurries. The Formation of Hydrogarnet,” Thermochimica Acta, V. 316, No. 2, 1998, pp. 149-154. doi: 10.1016/S0040-6031(98)00307-4

30. Jansen, D.; Goetz-Neunhoeffer, F.; Lothenbach, B.; and Neubauer, J., “The Early Hydration of Ordinary Portland Cement (OPC): An Approach Comparing Measured Heat Flow with Calculated Heat Flow From QXRD,” Cement and Concrete Research, V. 42, No. 1, 2012, pp. 134-138. doi: 10.1016/j.cemconres.2011.09.001

31. Kulik, D. A.; Wagner, T.; Dmytrieva, S. V.; Kosakowski, G.; Hingerl, F. F.; and Chudnenko, K. V.; and Berner, U. R., “GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes,” Computational Geosciences, V. 17, No. 1, Feb. 2013, pp. 1-24.

32. Wagner, T.; Kulik, D. A.; Hingerl, F. F.; and Dmytrieva, S. V., “Gem-Selektor Geochemical Modeling Package: TSolMod Library and Data Interface For Multicomponent Phase Models,” Canadian Mineralogist, V. 50, No. 5, 2012, pp. 1173-1195. doi: 10.3749/canmin.50.5.1173

33. Kulik, D. A., and Kersten, M., “Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems: II, End‐Member Stoichiometries of Ideal Calcium Silicate Hydrate Solid Solutions,” Journal of the American Ceramic Society, V. 84, No. 12, 2001, pp. 3017-3026. doi: 10.1111/j.1151-2916.2001.tb01130.x

34. Kulik, D. A., and Kersten, M., “Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems. 4. A Carbonation Model for Zn-Doped Calcium Silicate Hydrate by Gibbs Energy Minimization,” Environmental Science & Technology, V. 36, No. 13, 2002, pp. 2926-2931. doi: 10.1021/es010250v

35. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001

36. Matschei, T.; Lothenbach, B.; and Glasser, F. P., “Thermodynamic Properties of Portland Cement Hydrates in the System CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O,” Cement and Concrete Research, V. 37, No. 10, 2007, pp. 1379-1410. doi: 10.1016/j.cemconres.2007.06.002

37. Lothenbach, B.; Matschei, T.; Moschner, G.; and Glasser, F. P., “Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement,” Cement and Concrete Research, V. 38, No. 1, 2008, pp. 1-18. doi: 10.1016/j.cemconres.2007.08.017

38. Moschner, G.; Lothenbach, B.; Rose, J.; Ulrich, A.; Figi, R.; and Kretzschmar, R., “Solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3·26H2O),” Geochimica et Cosmochimica Acta, V. 72, No. 1, Jan 1. 2008, pp. 1-18.

39. Schmidt, T.; Lothenbach, B.; Romer, M.; Scrivener, K.; Rentsch, D.; and Figi, R., “A Thermodynamic and Experimental Study of the Conditions of Thaumasite Formation,” Cement and Concrete Research, V. 38, No. 3, 2008, pp. 337-349. doi: 10.1016/j.cemconres.2007.11.003

40. Möschner, G.; Lothenbach, B.; Winnefeld, F.; Ulrich, A.; Figi, R.; and Kretzschmar, R., “Solid Solution between Al-Ettringite and Fe-Ettringite (Ca6[Al1–xFex(OH)6]2(SO4)3·26H2O),” Cement and Concrete Research, V. 39, No. 6, 2009, pp. 482-489. doi: 10.1016/j.cemconres.2009.03.001

41. Kulik, D. A., “Improving the Structural Consistency Of C-S-H Solid Solution Thermodynamic Models,” Cement and Concrete Research, V. 41, No. 5, 2011, pp. 477-495. doi: 10.1016/j.cemconres.2011.01.012

42. Dilnesa, B.; Lothenbach, B.; Le Saout, G.; Renaudin, G.; Mesbah, A.; Filinchuk, Y.; Wichser, A.; and Wieland, E., “Iron in Carbonate Containing AFm Phases,” Cement and Concrete Research, V. 41, No. 3, 2011, pp. 311-323. doi: 10.1016/j.cemconres.2010.11.017

43. Lothenbach, B.; Pelletier-Chaignat, L.; and Winnefeld, F., “Stability in the System CaO-Al2O3-H2O,” Cement and Concrete Research, V. 42, No. 12, 2012, pp. 1621-1634. doi: 10.1016/j.cemconres.2012.09.002

44. Dilnesa, B. Z.; Lothenbach, B.; Renaudin, G.; Wichser, A.; and Wieland, E., “Stability of Monosulfate in the Presence of Iron,” Journal of the American Ceramic Society, V. 95, No. 10, 2012, pp. 3305-3316. doi: 10.1111/j.1551-2916.2012.05335.x

45. Dilnesa, B. Z.; Lothenbach, B.; Renaudin, G.; Wichser, A.; and Kulik, D., “Synthesis And Characterization of Hydrogarnet Ca3(AlxFe1–x)2(SiO4)y(OH)4(3–y),” Cement and Concrete Research, V. 59, 2014, pp. 96-111. doi: 10.1016/j.cemconres.2014.02.001

46. Parrot, L., and Killoh, D., “Prediction of Cement Hydration,” British Ceramic Proceedings, V. 35, 1984, pp. 41-53.

47. Duchesne, J., and Bérubé, M. A., “Effect of Supplementary Cementing Materials on the Composition of Cement Hydration Products,” Advanced Cement Based Materials, V. 2, No. 2, 1995, pp. 43-52. doi: 10.1016/1065-7355(95)90024-1

48. Deschner, F.; Winnefeld, F.; Lothenbach, B.; Seufert, S.; Schwesig, P.; Dittrich, S.; Goetz-Neunhoeffer, F.; and Neubauer, J., “Hydration of Portland Cement with High Replacement by Siliceous Fly Ash,” Cement and Concrete Research, V. 42, No. 10, 2012, pp. 1389-1400. doi: 10.1016/j.cemconres.2012.06.009

49. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001

50. Azad, V. J.; Li, C.; Verba, C.; Ideker, J. H.; and Isgor, O. B., “A COMSOL-GEMS Interface for Modeling Coupled Reactive-Transport Geochemical Processes,” Computers & Geosciences, V. 92, July, 2016, pp. 79-89. doi: 10.1016/j.cageo.2016.04.002

51. Lothenbach, B., and Gruskovnjak, A., “Hydration of Alkali-Activated Slag: Thermodynamic Modelling,” Advances in Cement Research, V. 19, No. 2, 2007, pp. 81-92. doi: 10.1680/adcr.2007.19.2.81

52. Glosser, D.; Jafari Azad, V.; Suraneni, P.; Isgor, B.; and Weiss, W. J., “An Extension of the Powers-Brownyard Model to Pastes Containing SCM,” ACI Materials Journal, V. 116, 2019, accepted for publication.

53. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, W. J., “Deicing Salts and Durability of Concrete Pavements and Joints: Mitigating Calcium Oxychloride Formation,” Concrete International, V. 38, No. 4, Apr. 2016, pp. 48-54.

54. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, W. J., “Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements,” Transportation Research Record: Journal of the Transportation Research Board, V. 2629, No. 1, 2017, pp. 24-32. doi: 10.3141/2629-05

55. Chatterji, S., “Mechanism of CaCl2 Attack on Portland-Cement Concrete,” Cement and Concrete Research, V. 8, No. 4, 1978, pp. 461-467. doi: 10.1016/0008-8846(78)90026-1

56. Collepardi, M.; Coppola, L.; and Pistolesi, C., “Durability of Concrete Structures Exposed to CaCl2 Based Deicing Salts,” Durability of Concrete, Proceedings of the Third CANMET/ACI International Conference, SP-145, V. M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, 1994, pp. 107-120.

57. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, W. J., “Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements,” Transportation Research Record: Journal of the Transportation Research Board, V. 2629, No. 1, 2017, pp. 24-32. doi: 10.3141/2629-05

58. Pourbeik, P.; Beaudoin, J. J.; Alizadeh, R.; and Raki, L., “Drying of Calcium-Silicate-Hydrates: Regeneration of Elastic Modulus,” Advances in Cement Research, V. 27, No. 8, 2015, pp. 470-476. doi: 10.1680/jadcr.14.00048

59. Vollpracht, A.; Lothenbach, B.; Snellings, R.; and Haufe, J., “The Pore Solution of Blended Cements: A Review,” Materials and Structures, V. 49, No. 8, 2016, pp. 3341-3367. doi: 10.1617/s11527-015-0724-1


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer