ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Stability of Lightweight Self-Consolidating Concrete Containing Coarse and Fine Expanded Slate Aggregates

Author(s): Mohamed M. Sadek, Mohamed K. Ismail, and Assem A. A. Hassan

Publication: Materials Journal

Volume: 117

Issue: 3

Appears on pages(s): 133-143

Keywords: expanded slate fine and coarse aggregates; fresh properties; semi-lightweight self-consolidating concrete; strength

DOI: 10.14359/51722407

Date: 5/1/2020

Abstract:
This study aimed to optimize the use of fine and coarse expanded slate lightweight aggregates in developing successful semi-lightweight self-consolidating concrete (SLWSCC) mixtures with densities ranging from 1850 to 2000 kg/m3 (115.5 to 124.9 lb/ft3) and strength of at least 50 MPa (7.25 ksi). All SLWSCC mixtures were developed by replacing either the fine or coarse normal-weight aggregates with expanded slate aggregates. Two additional normal-weight self-consolidating concrete mixtures were developed for comparison. The results indicated that due to the challenge in achieving acceptable self-consolidation, a minimum binder content of at least 500 kg/m3 (31.2 lb/ft3) and a minimum water-binder ratio (w/b) of 0.4 were required to develop successful SLWSCC with expanded slate. The use of metakaolin and fly ash were also found to be necessary to develop successful mixtures with optimized strength, flowability, and stability. The results also showed that SLWSCC mixtures made with expanded slate fine aggregate required more high-range water-reducing admixture than mixtures made with expanded slate coarse aggregate. However, at a given density, mixtures developed with expanded slate fine aggregate generally exhibited better fresh properties in terms of flowability and passing ability, as well as higher strength compared to mixtures developed with expanded slate coarse aggregate.


ALSO AVAILABLE IN:

Electronic Materials Journal