Title:
Interaction of Titania Nanotubes with Ca(OH)2 and C3S via Hydrothermal Approach
Author(s):
S M Fuad Kabir Moni, S. Mohd. Yonos Qatalli, Christian Pritzel, and Reinhard Trettin
Publication:
Materials Journal
Volume:
117
Issue:
5
Appears on pages(s):
233-240
Keywords:
C3S hydration; hydrothermal process; nanotechnology; titanium nanoparticles; titanium nanotubes
DOI:
10.14359/51725990
Date:
9/1/2020
Abstract:
The sorption of Ca2+ on the surface of TiO2 nanoparticles in a saturated solution of Ca(OH)2 was observed by rapid heat evolution compared to the reference sample using isothermal calorimetric analysis. In addition to that, the interaction of TiO2 nanoparticles with a saturated Ca(OH)2 solution under hydrothermal conditions (40, 80, and 120°C) in an autoclave was carried out as well. Perovskite formed as a result of interaction between TiO2 and saturated Ca(OH)2 under temperatures of 80 and 120°C. Similarly, the formation of perovskite was found along with a hydration product when tricalcium silicate was hydrated in the presence of TiO2 nanotubes under hydrothermal condition (120°C). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the presence of perovskite.
Related References:
1. Kreppelt, F.; Weibel, M.; Zampini, D.; and Romer, M., “Influence of Solution Chemistry on the Hydration of Polished Clinker Surfaces—A Study of Different Types of Polycarboxylic Acid-Based Admixtures,” Cement and Concrete Research, V. 32, No. 2, 2002, pp. 187-198. doi: 10.1016/S0008-8846(01)00654-8
2. Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; and Sato, T., “Cement and Concrete Nanoscience and Nanotechnology,” Materials (Basel), V. 3, No. 2, 2010, pp. 918-942. doi: 10.3390/ma3020918
3. Kowald, T., and Trettin, R., “Influence of Surface-Modified Carbon Nanotubes on Ultra-High Performance Concrete,” Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, Sept. 13-15, 2004, 195 pp.
4. Korpa, A.; Kowald, T.; and Trettin, R., “Hydration Behaviour, Structure and Morphology of Hydration Phases in Advanced Cement-Based Systems Containing Micro and Nanoscale Pozzolanic Additives,” Cement and Concrete Research, V. 38, No. 7, 2008, pp. 955-962. doi: 10.1016/j.cemconres.2008.02.010
5. Garboczi, E. J., Concrete Nanoscience and Nanotechnology: Definitions and Applications, 3rd International Symposium on Nanotechnology in Construction, Prague, Czech Republic, 2009, pp. 81-88.
6. Silvestre, J. P. T., “Nanotechnology in Construction: Towards Structural Applications,” master’s dissertation, Técnico Lisboa, Lisboa, Portugal, 2015.
7. Qattali, Y., “Interaction of Titanium Nanotube with C3S and OPC during Early Hydration,” master’s thesis, Institute of Building and Materials Chemistry, University of Siegen, Siegen, Germany, 2013.
8. Wang, Z.; Kowald, T.; and Trettin, R., “Investigation of Retarding Mechanism of ZnO Nanoparticles on C3S Hydration,” 2nd International Conference on the Chemistry of Construction Materials, Munich, Germany, 2016, 338 pp.
9. Korpa, A.; Kowald, T.; and Trettin, R., “Principles of Development, Phase Composition and Nanostructural Features of Multiscale Ultra High Performance Concrete Modified with Pyrogenic Nanoparticles—A Review Article,” American Journal of Materials Science and Application, V. 2, No. 2, 2014, pp. 17-30.
10. Tran, C.; Kowald, T.; Trettin, R.; Jonas, U.; and Petri, C., “Synthesizing Core-Shell Silica-Based Nanoparticles for Enhancing UHPC,” 2nd International Conference on the Chemistry of Construction Materials, Munich, Germany, 2016, pp. 408-411.
11. www.sigmaaldrich.com (©2018 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved)
12. Lee, B., and Kurtis, K., “Influence of TiO2 Nanoparticles on Early C3S Hydration,” Journal of the American Ceramic Society, V. 93, No. 10, 2010, pp. 3399-3405. doi: 10.1111/j.1551-2916.2010.03868.x
13. Feng, D.; Xie, N.; Gong, C.; Leng, Z.; Xiao, H.; Li, H.; and Shi, X., “Portland Cement Paste Modified by TiO2 Nanoparticles: A Microstructure Perspective,,” Industrial & Engineering Chemistry Research, V. 52, No. 33, 2013, pp. 11575-11582. doi: 10.1021/ie4011595
14. Chen, J.; Kou, S.; and Poon, C., “Hydration and Properties of Nano-TiO2 Blended Cement Composites,,” Cement and Concrete Composites, V. 34, No. 5, 2012, pp. 642-649. doi: 10.1016/j.cemconcomp.2012.02.009
15. Meng, T.; Yu, Y.; Qian, X.; Zhan, S.; and Qian, K., “Effect of Nano-TiO2 on the Mechanical Properties of Cement Mortar,,” Construction and Building Materials, V. 29, 2012, pp. 241-245. doi: 10.1016/j.conbuildmat.2011.10.047
16. Nazari, A., and Riahi, S., “The Effects of TiO2 Nanoparticles on Properties of Binary Blended Concrete,,” Journal of Composite Materials, V. 45, No. 11, 2011, pp. 1181-1188. doi: 10.1177/0021998310378910
17. Jalal, M., “Durability Enhancement of Concrete by Incorporating Titanium Dioxide Nanopowder Into Binder,,” The Journal of American Science, V. 4, 2012, pp. 289-294.
18. Jayapalan, A.; Lee, B.; and Kurtis, K., “Can Nanotechnology be ‘Green’? Comparing Efficacy of Nano and Microparticles in Cementitious Materials,” Cement and Concrete Composites, V. 36, 2013, pp. 16-24. doi: 10.1016/j.cemconcomp.2012.11.002
19. Yang, L.; Yining, G.; Wang, F.; Peng, L.; and Shuguang, H., “Enhanced Photocatalytic Performance of Cementitious Material with TiO2@Ag Modified Fly Ash Micro‐Aggregates,,” Chinese Journal of Catalysis, V. 38, No. 2, 2017, pp. 357-364. doi: 10.1016/S1872-2067(16)62590-1
20. Ganji, N.; Allahverdi, A.; Naeimpoor, F.; and Mahinroosta, M., “Photocatalytic Effect of Nano-TiO2 Loaded Cement on Dye Decolorization and Escherichia Coli Inactivation under UV Irradiation,,” Research on Chemical Intermediates, V. 42, No. 6, 2016, pp. 5395-5412. doi: 10.1007/s11164-015-2374-x
21. Hou, Y.; Yang, S.; Chunzhong, L.; Zhaob, H.; and Yang, H. G., “TiO2 Cement for High-Performance Dye-Sensitized Solar Cells,” RSC Advances, Issue 87, 2016.
22. Ali, M.; Pritzel, C.; and Trettin, R., “Synthesis of Titania Nanoparticles and Study of Its Influence in Cementitious Systems,” Fifth International Symposium on Nanotechnology in Construction (NICOM5) Chicago, IL, May 24 and May 26, 2015.
23. Zhang, R.; Cheng, X.; Hou, P.; and Ye, Z., “Influences of Nano-TiO2 on the Properties of Cement-Based Materials: Hydration and Drying Shrinkage,,” Construction and Building Materials, V. 81, 2015, pp. 35-41. doi: 10.1016/j.conbuildmat.2015.02.003
24. Jayapalan, A. R.; Lee, B. Y.; and Kurtis, K. E., “Effect of Nano-sized Titanium Dioxide on Early Age Hydration of Portland Cement,” 3rd International Symposium on Nanotechnology in Construction, Prague, Czech Republic, 2009, pp. 267-274.
25. Kowald, T., and Trettin, R., “Improvement of Cementitious Binders by Multi-Walled Carbon Nanotubes,” Proceedings of the 3rd International Symposium on Nanotechnology in Construction, Springer, Heidelberg, Germany, 2009. doi: 10.1007/978-3-642-00980-8_3410.1007/978-3-642-00980-8_34
26. Butters, V.; Kowald, T.; and Trettin, R., “Coating of CNTs by SiO2 and their Influence on Hydrating Tricalcium Silicate,” 1st International Conference on the Chemistry of Construction Materials, Frankfurt, Germany, 2013, pp. 377-380.
27. Richard, P., “Reactive Powder Concrete: A New Ultra-High Strength Cementitious Material,” 4th International Symposium on Utilization of High Strength Concrete, 1996, pp. 1343-1349.
28. Cheyrezy, M.; Maret, V.; and Frouin, L., “Microstructural Analysis of RPC (Reactive Powder Concrete),” Cement and Concrete Research, V. 25, No. 7, 1995, pp. 1491-1500. doi: 10.1016/0008-8846(95)00143-Z
29. Müller, U.; Kühne, H.-C.; Fontana, P.; and Meng, B., Nemecek, J.: “Micro Texture and Mechanical Properties of Heat Treated and Autoclaved Ultra High Performance Concrete (UHPC),” Proceedings of the International Symposium of Ultra High Performance Concrete, second edition, Kassel, Germany, Mar. 5-7, 2008, pp. 213-220.
30. Sauzeat, E.; Feylessoufi, A.; Villieras, F.; Yvon, J.; Cases, J. M.; and Richard, P., “Textural Analysis of Reactive Powder Concretes,” Proceedings of the 4th International Symposium on Utilization of High-Strength/High-Performance Concrete, 1996.
31. www.aerosil.com/product/aerosil/en/effects/photocatalyst/Pages/default.aspx (Margit Koehler, Market Communications, Evonik Resource Efficiency GmbH,© Evonik Resource Efficiency GmbH, issued: Mar. 2016)
32. Stötzel, T., “Einfluss von Titanat-Nanotubes auf die Hydratation von Tricalciumsilikat,” DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften, eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen, Siegen, Germany, 2014.
33. www.holcim.de ((Holcim (Deutschland) GmbH, Willy-Brandt-Straße 69, D-20457 Hamburg, kommunikation-DEU@lafargeholcim.com))
34. Nicoleau, L.; Nonat, A.; and Perrey, D., “The Di- and Tricalcium Silicate Dissolutions,,” Cement and Concrete Research, V. 47, 2013, pp. 14-30. doi: 10.1016/j.cemconres.2013.01.017
35. Yu, D.; Zhang, J.; Wang, F.; Zhao, M.; Du, K.; Shu, S.; Zou, J.; and Wang, Y., “High-Symmetry Epitaxial Growth under Solvothermal Conditions: A Strategy for Architectural Growth of Tubular and Nontubular CaTiO3 Microstructures with Regular Geometrical Morphologies and Tunable Dimensions,,” Crystal Growth & Design, V. 13, No. 7, 2013, pp. 3138-3143. doi: 10.1021/cg400514q
36. Lencka, M. M., and Riman, R. E., “Thermodynamics of the Hydrothermal Synthesis of Calcium Titanate with Reference to Other Alkaline-Earth Titanates,,” Chemistry of Materials, V. 7, No. 1, 1995, pp. 18-25. doi: 10.1021/cm00049a006
37. Huang, Y. J.; Tsai, M. C.; Chiu, H. T.; Sheu, H. S.; and Lee, C. Y., “Artificial Synthesis of Platelet-Like Kassite and Its Transformation to CaTiO3,” Crystal Growth & Design, V. 10, No. 3, 2010, pp. 1221-1225. doi: 10.1021/cg901204x
38. Schultze‐Rhonhof, E., “Beiträge zur Chemie des Bauxitaufschlusses. Untersuchungen im System Na2O-CaO-Al2O3-TiO2-H2O im Temperaturbereich 100–275° C,” Zeitschrift fur Anorganische und Allgemeine Chemie, V. 396, No. 3, 1973, pp. 303-307. doi: 10.1002/zaac.19733960309
39. Croker, D.; Loan, M.; and Hodnett, B., “Kinetics and Mechanisms of the Hydrothermal Crystallization of Calcium Titanate Species,” Crystal Growth & Design, V. 9, No. 5, 2009, pp. 2207-2213. doi: 10.1021/cg8009223
40. Durrani, S. K.; Khan, Y.; Ahmed, N.; Ahmad, M.; and Hussain, M. A., “Hydrothermal Growth of Calcium Titanate Nanowires from Titania,” Journal of the Indian Chemical Society, V. 8, No. 2, 2011, pp. 562-569. doi: 10.1007/BF03249091
41. Maki, I., and Chromý, S., “Microscopic Study on the Polymorphism of Ca3SiO5,,” Cement and Concrete Research, V. 8, No. 4, 1978, pp. 407-414. doi: 10.1016/0008-8846(78)90020-0
42. Bezerra, U. T.; Martinelli, A. E.; Melo, D. M. A.; Melo, M. A. F.; and Oliveira, V. G., “The Strength Retrogression of Special Class Portland Oilwell Cement,” Cerâmica, V. 57, No. 342, 2011, pp. 150-154. doi: 10.1590/S0366-69132011000200004
43. Park, K.-H., and Kim, H.-G., “Improvement of the Formation and the Thermal Properties of CaTiO3 Fabricated from a CaO-TiO2 Mixture by Using the Mechanochemical Method,” Journal of the Korean Physical Society, V. 56, No. 2, 2010, pp. 648-652. doi: 10.3938/jkps.56.648