Title:
Assessing the deicer salt scaling resistance of concrete containing supplementary cementing materials
Author(s):
Marc Jolin;R.D. Hooton;B.Fournier;R. Gagne;J. Marchand;R. McGrath;A. Delagrave;N.J. Popoff;J.-C. Leduc;J.C. Flynn;B. Pope;Y. Brousseau
Publication:
CRC
Volume:
Issue:
Appears on pages(s):
Keywords:
fly ash, blast-furance slag, slag, de-icer salt, SCM
DOI:
Date:
12/19/2019
Abstract:
Fly ash and ground granulated blast-furnace slag are now commonly used in the production of concrete
mixtures for residential, commercial and industrial applications. In addition to reducing the amount of
Portland cement added to concrete (which often decreases the cost of production), the addition of fly
ash and slag also contributes to improve numerous physical and durability-related properties of the
material and offers significant benefits from an environmental standpoint.
Despite their numerous advantages, the use of SCM for the production of concrete structures likely to
be exposed to cold climates is often impeded by the fact that laboratory investigations invariably
indicate that partial replacement of Portland cement with fly ash or slag markedly reduces the frost
resistance of concrete in presence of de-icing chemicals. The conclusions of these numerous laboratory
studies are apparently, however, not corroborated by field experience. The discrepancy between the
two series of observations has led numerous researchers to question the reliability of the accelerated
test procedure used in the laboratory to assess the de-icer salt scaling resistance of concrete.
The main objective of this research is to understand the detrimental influence of fly ash and slag on the
de-icer salt scaling behavior of concrete as evaluated by laboratory procedures. Various ways to
improve the scaling durability of concrete mixtures containing SCM will be explored. A great deal of
effort will also be spent on the enhancement of the reliability of existing test procedures to assess the
de-icer salt scaling performance of concrete.The first efforts consisted in an investigation of the influence of various test parameters. Indeed, as
previously emphasized, the ASTM C 672 has been extensively criticized for the relatively high variability
of its test results This first task of the project is therefore entirely devoted to the investigation of the
influence of the temperature cycle characteristics on the de-icer salt scaling performance of concrete
(rate of freezing, minimal freezing temperature and length of freezing period).
The second task is focused on the systematic study of the effects of various curing regimes on the deicer salt scaling resistance of concrete mixtures incorporating SCM. For each of the seven mixtures
selected, the influence of three different curing regimes currently used in practice will be tested. Also a
fourth series of samples will be cast in molds in which a synthetic membrane is placed at the bottom.
This approach is the one suggested by the "Bureau de normalisation du Québec" (standard NQ-2621-
900-1) after it was reported that this procedure significantly reduced bleeding. A sorptivity test should
help to better understand the effect of bleeding, mixture design, and curing conditions on the pores
network and on the transport properties of the paste located just beneath the exposed top surface (0
to 10 mm) of the sample.
The influence of fly ash and ground granulated blast furnace slag on the specific microstructure of
paste located near concrete surface (0-5 mm) and the ice formation will also be investigated. This part
of the study will be divided into two steps. Study of the microstructure of concrete skin containing
supplementary cementitious materials was performed on samples cored from concrete sidewalks in
Montreal.