Title:
Behavior of Lightweight Self-Consolidating Concrete Columns Reinforced with Glass Fiber-Reinforced Polymer Bars and Spirals under Axial and Eccentric Loads
Author(s):
Abdoulaye Sanni B., Hamdy M. Mohamed, Ammar Yahia, and Brahim Benmokrane
Publication:
Structural Journal
Volume:
118
Issue:
3
Appears on pages(s):
241-253
Keywords:
analytical P-M interaction diagram; axial and eccentric loading; axial-flexural capacity; circular reinforced concrete columns; design codes; glass fiber-reinforced polymer (GFRP) bars and spirals; lightweight self-consolidating concrete (LWSCC); lightwe
DOI:
10.14359/51730530
Date:
5/1/2021
Abstract:
This paper presents the test results of an experimental investigation conducted on 14 full-scale circular lightweight self-consolidating concrete (LWSCC) columns reinforced with glass fiber-reinforced polymer (GFRP) bars and spirals. The 300 mm (12 in.) diameter columns were designed according to CAN/CSA S806-12 code requirements. The columns were constructed using new designed and developed LWSCC and tested under axial and eccentric loading. The test variables were the eccentricity-to-diameter ratio, longitudinal reinforcement ratio, and type of reinforcement (steel versus GFRP). Four eccentricity-to-diameter ratios were estimated and applied (8.2, 16.4, 32.8, and 65.6%) to develop the nominal failure envelope. Test results indicate that increasing the GFRP longitudinal-reinforcement ratio enhanced the post-peak performance of LWSCC columns. On the other hand, the failure mechanism of the tested LWSCC columns was similar to that reported previously for conventional reinforced normal-weight concrete columns. Based on the fundamentals of equilibrium of forces and compatibility of strains, the available equivalent stressblock parameters and design provisions in the literature were used to predict the axial-flexural capacity of the tested GFRP-reinforced LWSCC columns. The predicted i interaction diagrams are presented and discussed.