ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Hardening and Shrinkage Kinetics of Geopolymers

Author(s): Hugo Thuilliez, Christophe Lanos, Annabelle Phelipot-Mardelé, Gérard Mauvoisin

Publication: Symposium Paper

Volume: 362

Issue:

Appears on pages(s): 487-498

Keywords: 3D scanner, alkali activated binder, alternative material, drying shrinkage, geopolymer, macroindentation, shrinkage

DOI: 10.14359/51741005

Date: 6/14/2024

Abstract:
Geopolymers are amorphous mineral materials manufactured from aluminosilicates and a strongly basic alkaline solution. One of their advantages is a lower carbon footprint than conventional cementitious binders. However, they are subject to significant drying shrinkage. In this study, geopolymer samples are produced from metakaolin, silica fume, and a potash solution. The mixture proportions are selected to reach the molar ration Si/Al=1.8, K/Al=1.15, and H2O/K=5.3 leading to satisfactory rheology while mixing. Cylindrical samples (70 mm diameter, 40 mm height) are exposed to various curing conditions (temperature and relative humidity). A protocol including 3D scanning and instrumented macroindentation is used to monitor the drying shrinkage and hardening kinetics. Sample volume change and hardness are measured periodically until sample mass stabilization. It appears that the hardest samples are also the most cracked. Covering the sample for 5 days at 23°C or 24 hours at 40°C limits the shrinkage to ~1% but leads to a large decrease of the hardness compared to the hardest samples. An optimal geopolymerization requires a minimal amount of water which decreases with the progress of the reaction. Optimal curing conditions are identified. Thus, covering the sample for 3 days at 23°C allows to limit the shrinkage to 3% without cracking while reaching satisfactory mechanical properties.