Title:
Novel Solar Concentrator for Very High Temperature Processing of Lunar Cement
Author(s):
Joseph J. O'Gallagher and T. D. Lin
Publication:
Symposium Paper
Volume:
125
Issue:
Appears on pages(s):
245-254
Keywords:
cements; concentrators; furnaces; high temperature; lunar bases; manufacturing; solar energy; General
DOI:
10.14359/3796
Date:
5/1/1991
Abstract:
In the lunar environment, the use of solar thermal energy has obvious advantages over any combustion or electrical furnace for driving high-temperature processes. However, extremely high temperatures, in the range of 1700 to 2000 C, will be necessary to produce cement from lunar minerals and will, in turn, require very high levels of solar flux concentration. Such levels can only be achieved in practice with some form of ideal or near-ideal nonimaging concentrator that can approach the maximum concentration permitted by physical conservation laws. In particular, very substantial gains in efficiency can be generated through the incorporation of a properly designed ideal or near-ideal nonimaging secondary concentrator in a two-stage configuration with a long focal ratio primary concentrator. A preliminary design configuration for such a high-flux nonimaging solar concentrating furnace for lunar applications is presented. It employs a tracking heliostat and a fixed, off-axis, two-stage concentrator with a long focal length utilizing a nonimaging trumpet or CPC-type secondary deployed in the focal zone of the primary. An analysis of the benefits associated with this configuration employed as a solar furnace in the lunar environment shows that the thermal conversion efficiency can be about 3 to 5 times that of the corresponding conventional design at 2000 C. Furthermore, this configuration allows the primary collecting aperture to remain unshaded by the furnace or any associated support structure.