Title:
Analytical Study Concerning Prediction of Concrete Expansion Due to Alkali-Silica Reaction
Author(s):
Y. Furusawa, H. Ohga, and T. Uomoto
Publication:
Symposium Paper
Volume:
145
Issue:
Appears on pages(s):
757-780
Keywords:
alkali-aggregate reactions; chemical tests; concretes; deterioration; diffusion; expansion; leaching; models; mortar bar test; temperature; tests; Materials Research
DOI:
10.14359/4358
Date:
5/1/1994
Abstract:
Although aggregates in the concrete matrix are regarded primarily as inert, certain aggregates have been identified as deleterious due to their chemical reactivity in an alkaline environment. Despite extensive research on the various aspects of this problem, a rational model that comprehensively explains the rate of the chemical reaction and resulting expansion has not yet been presented. Paper deals primarily with modeling of the chemical reactions and ensuing expansion in the case of alkali-silica reaction. The chemical reaction phase has been assumed to be governed by the rate of diffusion of hydroxide and alkali ions into the aggregate. The model also assumes the existence of a porous zone around the aggregate and that expansion is initiated only after the amount of reaction products exceeds the volume of this porous zone. An attempt has also been made to discuss some experimental results in the light of the proposed model and provide some of the analytical results arrived at using the model. It was found that by carrying out a slightly modified version of the quick chemical test, the apparent diffusion coefficients of the hydroxide ions can be estimated and the results can be used to accurately estimate the expansion ensuing during the mortar bar tests. Analytical results also indicate that certain characteristic features of alkali-aggregate reaction-related expansion, such as the existence of an incubation period before the onset of expansion, varying rates of expansion, and the shapes of the expansion-time curves, can be explained using the model proposed by the authors.