Shear Tests on Composite Dowel Rib Connectors in Cracked Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Shear Tests on Composite Dowel Rib Connectors in Cracked Concrete

Author(s): Martin Classen and Josef Hegger

Publication: Structural Journal

Volume: 115

Issue: 3

Appears on pages(s): 661-671

Keywords: composite structures; cracked concrete; pryout failure; rib shear connector; shear tests

DOI: 10.14359/51701145

Date: 5/1/2018

Abstract:
In steel-concrete composite girders, composite dowel rib shear connectors can be used to transfer shear forces between the concrete slab and the steel section. In regions with negative bending moment, where concrete cracking occurs, the shear capacity of composite dowel connectors may be affected by transverse concrete cracks. So far, the internal shear-carrying mechanisms of composite dowel connectors in cracked concrete are not clarified, and existing shear capacity models do not account for concrete cracking. Hence, the present paper summarizes the results of 38 shear tests, providing novel insights regarding the pryout failure in cracked concrete. The tests were performed in an innovative test setup allowing the investigation of the impact of crack spacing and crack width. Using the test results, the present paper analyzes the phenomenology of pryout failure in cracked concrete.

Related References:

1. Chu, T. H. V.; Bui, D. V.; Le, V. P. N.; Kim, I.-T.; Ahn, J.-H.; and Dao, D. K., “Shear Resistance Behaviors of a Newly Puzzle Shape of Crestbond Rib Shear Connector: An Experimental Study,” Steel and Composite Structures, V. 21, No. 5, 2016, pp. 1157-1182. doi: 10.12989/scs.2016.21.5.1157

2. Lorenc, W.; Kożuch, M.; and Rowiński, S., “The Behaviour of Puzzle-Shaped Composite Dowels — Part I: Experimental Study,” Journal of Constructional Steel Research, V. 101, 2014, pp. 482-499. doi: 10.1016/j.jcsr.2014.05.013

3. Lechner, T.; Gehrlein, S.; and Fischer, O., “Structural Behaviour of Composite Dowels in thin UHPC-Elements,” Steel Construction, V. 9, No. 2, 2016, pp. 132-137. doi: 10.1002/stco.201610012

4. da. C. Vianna, J.; de Andrade, S. A. L.; da S. Vellasco, P. C. G.; and Costa-Neves, L. F., “Experimental Study of Perfobond Shear Connectors in Composite Construction,” Journal of Constructional Steel Research, V. 81, 2013, pp. 62-75. doi: 10.1016/j.jcsr.2012.11.002

5. Valente, I., and Cruz, P., “Experimental Analysis of Perfobond Shear Connection between Steel and Lightweight Concrete,” Journal of Constructional Steel Research, V. 60, No. 3-5, 2004, pp. 465-479. doi: 10.1016/S0143-974X(03)00124-X

6. Ahn, J. H.; Lee, C. G.; Won, J. H.; and Kim, S. H., “Shear Resistance of the Perfobond-Rib Shear Connector Depending on Concrete Strength and Rib Arrangement,” Journal of Constructional Steel Research, V. 66, No. 10, 2010, pp. 1295-1307. doi: 10.1016/j.jcsr.2010.04.008

7. Hechler, O.; Berthellemy, J.; Lorenc, W.; Seidl, G.; and Viefhues, E., “Continuous Shear Connectors in Bridge Construction,” Composite Construction in Steel and Concrete, V. VI, 2011, pp. 78-91. doi: 10.1061/41142(396)7

8. Furche, J., and Eligehausen, R., “Lateral Blow-out Failure of Headed Studs Near a Free Edge,” Anchors in Concrete: Design and Behavior, SP-130, American Concrete Institute, Farmington Hills, MI, 1991, pp. 235-252.

9. Zapfe, C., “Trag- und Verformungsverhalten von Verbundträgern mit Betondübeln zur Übertragung der Längsschubkräfte,” dissertation, Institut für Konstruktiven Ingenieurbau, Universität der Bundeswehr, München, Deutschland, 2001.

10. Seidl, G., “Verhalten und Tragfähigkeit von Verbunddübeln in Stahlbetonverbundträgern,” dissertation, TU Breslau, 2009.

11. Heinemeyer, S., “Zum Trag- und Verformungsverhalten von Verbundträgern aus ultrahochfestem Beton mit Verbundleisten,” Schriftenreihe Institut für Massivbau RWTH Aachen, Aachen, Deutschland, 2011.

12. Feldmann, M.; Kopp, M.; and Pak, D., “Composite Dowels as Shear Connectors for Composite Beams—Background to the German Technical Approval,” Steel Construction, V. 9, No. 2, 2016, pp. 80-88. doi: 10.1002/stco.201610020

13. American Institute for Steel Construction (AISC), “Specification for Structural Steel Buildings (ANSI/AISC 360-05),” American Institute for Steel Construction, Chicago, IL, 2005.

14. ACI Committee 318-B, “Appendix D – Anchoring to Concrete, Code CB-30,” draft version, American Concrete Institute, Farmington Hills, MI, June 22, 2000.

15. Eurocode 4, “Design of Composite Steel and Concrete Structures – Part 1-1: General Rules and Rules for Buildings (EN 1994 -1-1: 2004),” European Committee for Standardization, Brussels, Belgium, 2012.

16. Classen, M., and Herbrand, M., “Shear Behavior of Composite Dowels in Transversely Cracked Concrete,” Structural Concrete, V. 16, No. 2, 2015, pp. 195-206. doi: 10.1002/suco.201400100

17. Research Project Preco-Beam, “Prefabricated Enduring Composite Beams Based on Innovative Shear Transmission,” Research Fund for Coal and Steel, 2010.

18. Classen, M., “Zum Trag- und Verformungsverhalten von Verbundträgern mit Verbunddübelleisten und großen Stegöffnungen,” PhD thesis, RWTH Aachen, Aachen, Deutschland, 2016.

19. Classen, M., and Hegger, J., “Pry-Out of Composite Dowels in Cracked Concrete,” Stahlbau, V. 86, No. 3, 2017, pp. 256-268. doi: 10.1002/stab.201710470

20. Johnson, R. P.; Greenwood, R. D.; and van Dalen, K., “Stud Shear-Connectors in Hogging Moment Regions of Composite Neams,” The Structural Engineer, V. 47, No. 9, 1969, pp. 345-350.

21. Döinghaus, P., “Zum Zusammenwirken hochfester Baustoffe in Verbundträgern,” PhD-Thesis, RWTH Aachen, Aachen, Deutschland, 2002.

22. Ramm, W., and Elz, S., “Zur Duktilität von Gurtplatten im Negativen Momentenbereich,” DAfStb-Forschungskolloquium, Kaiserslautern, 1995.

23. Ollgaard, J. G.; Slutter, R. G.; and Fisher, J. W., “Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete,” Engineering Journal (New York), V. 8, No. 2, 1971, pp. 55-64.

24. Oehlers, D. J., and Coughlan, C. G., “The Shear Stiffness of Stud Shear Connections in Composite Beams,” Journal of Constructional Steel Research, V. 6, No. 4, 1986, pp. 273-284. doi: 10.1016/0143-974X(86)90008-8

25. Xue, W.; Ding, M.; Wang, H.; and Luo, Z., “Static Behavior and Theoretical Model of Stud Shear Connectors,” Journal of Bridge Engineering, ASCE, V. 13, No. 6, 2008, pp. 623-634. doi: 10.1061/(ASCE)1084-0702(2008)13:6(623)

26. Ghosh, A. R., and Malik, S. K., “Contribution of Longitudinal Reinforcement to the Ultimate Strength of Composite Sections under Hogging Moment,” Indian Concrete Journal, V. 44, No. 8, 1970, pp. 341-345.

27. Mallick, S. K., and Chattopadhyay, S. K., “Behaviour of Continuous Steel-Concrete Composite Beams,” Indian Concrete Journal, V. 49, No. 6, 1975, pp. 173-178.

28. Rex, C. O., and Easterling, W. S., “Partially Restrained Composite Beam-Girder Connections,” Journal of Constructional Steel Research, V. 58, No. 5-8, 2002, pp. 1033-1060. doi: 10.1016/S0143-974X(01)00081-5

29. Anderson, N. S., and Meinheit, D. F., “Pryout Capacity of Cast-in Headed Stud Anchors,” PCI Journal, V. 50, No. 2, 2005, pp. 90-112. doi: 10.15554/pcij.03012005.90.112

30. Classen, M., and Hegger, J., “Assessing the Pry-Out Resistance of Open Rib Shear Connectors in Cracked Concrete–Engineering Model with Aggregate Interlock,” Engineering Structures, V. 148, 2017, pp. 254-262. doi: 10.1016/j.engstruct.2017.06.050


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer