Microplane-Based Nonlinear Finite Element Analysis of Fiber-Reinforced Polymer-Strengthened Reinforced Concrete Columns

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Microplane-Based Nonlinear Finite Element Analysis of Fiber-Reinforced Polymer-Strengthened Reinforced Concrete Columns

Author(s): M. Chellapandian, S. Suriya Prakash, Vinay Mahadik, and Akanshu Sharma

Publication: Structural Journal

Volume: 117

Issue: 1

Appears on pages(s): 255-268

Keywords: eccentric compression; finite element (FE) analysis; hybrid fiber-reinforced polymer (FRP) strengthening; interaction diagram; near-surface mounting (NSM) strengthening; reinforced concrete (RC) columns

DOI: 10.14359/51718075

Date: 1/1/2020

Abstract:
This paper presents the results of nonlinear finite element (FE) analysis of fiber-reinforced polymer (FRP)-strengthened reinforced concrete (RC) columns under different combinations of axial compression (P) and bending (M) loads. Three-dimensional FE models of RC columns were analyzed for different eccentricity (e) to depth (h) ratios as: a) axial loading (e/h = 0); b) uniaxial eccentric loading (e/h = 0.15 and 0.63); and c) pure bending (e/h = ∞). Three different strengthening schemes—namely, 1) near-surface mounting (NSM); 2) external bonding (EB); and 3) hybrid strengthening—were considered. The load-displacement curves, P-M interaction diagram, and failure modes from FE analysis and experiments compared quite well. The validated FE modeling approach was used for performing parametric investigation to evaluate the influence of: 1) concrete strength; 2) carbon FRP (CFRP) laminate ratio in NSM strengthening; 3) CFRP fabric ratio in EB technique; and 4) CFRP ratios in hybrid strengthening.

Related References:

1. Vuggumudi, S., and Alagusundaramoorthy, P., “Interaction Diagram for FRP Strengthened RC Rectangular Columns with Large Aspect Ratio,” Construction and Building Materials, V. 171, 2018, pp. 187-196. doi: 10.1016/j.conbuildmat.2018.03.131

2. Hawileh, R.; Nawaz, W.; and Abdalla, J. A., “Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with Hardwire Steel-Fiber Sheets,” Construction and Building Materials, V. 172, 2018, pp. 562-573. doi: 10.1016/j.conbuildmat.2018.03.225

3. He, R.; Yang, Y.; and Sneed, L. H., “Seismic Repair of Reinforced Concrete Bridge Columns: A Review of Research Findings,” Journal of Bridge Engineering, ASCE, V. 20, No. 12, 2015, p. 04015015 doi: 10.1061/(ASCE)BE.1943-5592.0000760

4. Barros, J. A. O.; Varma, R. K.; Sena-Cruz, J. M.; and Azevedo, A. F. M., “Near-Surface Mounted FRP Strips for the Flexural Strengthening of RC Columns - Experimental and Numerical Research,” Engineering Structures, V. 30, No. 12, 2008, pp. 3412-3425. doi: 10.1016/j.engstruct.2008.05.019

5. Hadi, M. N. S., and Widiarsa, I. B. R., “Axial and Flexural Performance of Square RC Columns Wrapped with CFRP under Eccentric Loading,” Journal of Composites for Construction, ASCE, V. 16, No. 6, 2012, pp. 640-649. doi: 10.1061/(ASCE)CC.1943-5614.0000301

6. Lignola, G. P.; Prota, A.; Manfredi, G.; and Cosenza, E., “Experimental Performance of RC Hollow Columns Confined with CFRP,” Journal of Composites for Construction, ASCE, V. 11, No. 1, 2007, pp. 42-49. doi: 10.1061/(ASCE)1090-0268(2007)11:1(42)

7. Kuntal, V. S.; Chellapandian, M.; and Prakash, S. S., “Efficient Near Surface Mounted CFRP Shear Strengthening of High Strength Prestressed Concrete Beams – An Experimental Study,” Composite Structures, V. 180, 2017, pp. 16-28. doi: 10.1016/j.compstruct.2017.07.095

8. Perrone, M.; Barros, J. A. O.; and Aprile, A., “CFRP-Based Strengthening Technique to Increase the Flexural and Energy Dissipation Capacities of RC Columns,” Journal of Composites for Construction, ASCE, V. 13, No. 5, 2009, pp. 372-383. doi: 10.1061/(ASCE)CC.1943-5614.0000031

9. Mostofinejad, D., and Torabian, A., “Experimental Study of Circular RC Columns Strengthened with Longitudinal CFRP Composites under Eccentric Loading: Comparative Evaluation of EBR and EBROG Methods,” Journal of Composites for Construction, ASCE, V. 20, No. 2, 2016, p. 04015055 doi: 10.1061/(ASCE)CC.1943-5614.0000618

10. Bournas, D. A., and Triantafillou, T. C., “Flexural Strengthening of Reinforced Concrete Columns with Near-Surface-Mounted FRP or Stainless Steel,” ACI Structural Journal, V. 106, No. 4, July-Aug. 2009, pp. 495-505.

11. Jiang, S.; Zeng, X.; Shen, S.; and Xu, X., “Experimental Studies on the Seismic Behavior of Earthquake-Damaged Circular Bridge Columns Repaired by Using a Combination of Near-Surface-Mounted BFRP Bars with External BFRP Sheets Jacketing,” Engineering Structures, V. 106, 2016, pp. 317-331. doi: 10.1016/j.engstruct.2015.10.037

12. Lim, D. H., “Combinations of NSM and EB CFRP Strips for Flexural Strengthening of Concrete Structures,” Magazine of Concrete Research, V. 61, No. 8, 2009, pp. 633-643. doi: 10.1680/macr.2008.61.8.633

13. Goksu, C.; Polat, A.; and Ilki, A., “Attempt for Seismic Retrofit of Existing Substandard RC Members under Reversed Cyclic Flexural Effects,” Journal of Composites for Construction, ASCE, V. 16, No. 3, 2012, pp. 286-299. doi: 10.1061/(ASCE)CC.1943-5614.0000256

14. Kumar, N.; Rajagopal, A.; and Pandey, M., “Plasticity-Based Approach for Failure Modeling of Unreinforced Masonry,” Engineering Structures, V. 80, 2014, pp. 40-52. doi: 10.1016/j.engstruct.2014.08.021

15. Pham, H. B.; Al-Mahaidi, R.; and Saouma, V., “Modelling of CFRP–Concrete Bond Using Smeared and Discrete Cracks,” Composite Structures, V. 75, No. 1-4, 2006, pp. 145-150. doi: 10.1016/j.compstruct.2006.04.039

16. Chen, G. M.; Chen, J. F.; and Teng, J. G., “On the Finite Element Modeling of RC Beams Shear-Strengthened with FRP,” Construction and Building Materials, V. 32, 2012, pp. 13-26. doi: 10.1016/j.conbuildmat.2010.11.101

17. Ghiassi, B.; Marcari, G.; Oliveira, D. V.; and Lourenco, P. B., “Numerical Analysis of Bond Behavior between Masonry Bricks and Composite Materials,” Engineering Structures, V. 43, 2012, pp. 210-220. doi: 10.1016/j.engstruct.2012.05.022

18. Gholampour, A., and Ozbakkaloglu, T., “Behavior of Steel Fiber-Reinforced Concrete-Filled FRP Tube Columns: Experimental Results and a Finite Element Model,” Composite Structures, V. 194, 2018, pp. 252-262. doi: 10.1016/j.compstruct.2018.03.094

19. You, Y. M.; Ayoub, A.; and Belarbi, A., “Three-Dimensional Nonlinear Finite-Element Analysis of Prestressed Concrete Beams Strengthened in Shear with FRP Composites,” Journal of Composites for Construction, V. 16, No. 3, 2011, pp. 286-299.

20. Karabinis, A. I.; Rousakis, T. C.; and Manolitsi, G. E., “3D Finite Element Analysis of Substandard RC Column Strengthened by Fiber-Reinforced Polymer Sheets,” Journal of Composites for Construction, ASCE, V. 12, No. 5, 2008, pp. 531-540. doi: 10.1061/(ASCE)1090-0268(2008)12:5(531)

21. Mirmiran, A.; Zagers, K.; and Yuan, W., “Nonlinear Finite Element Modeling of Concrete Confined by Fiber Composites,” Finite Elements in Analysis and Design, V. 35, No. 1, 2000, pp. 79-96. doi: 10.1016/S0168-874X(99)00056-6

22. Gambarelli, S.; Nistico, N.; and Ozbolt, J., “Numerical Analysis of Compressed Concrete Columns Confined with CFRP: Microplane-Based Approach,” Composites. Part B, Engineering, V. 67, 2014, pp. 303-312. doi: 10.1016/j.compositesb.2014.06.026

23. Ozbakkaloglu, T.; Gholampour, A.; and Lim, J. C., “Damage-Plasticity Model for FRP-Confined Normal-Strength and High-Strength Concrete,” Journal of Composites for Construction, ASCE, V. 20, No. 6, 2016, p. 04016053 doi: 10.1061/(ASCE)CC.1943-5614.0000712

24. Obaidat, Y. T.; Heyden, S.; and Dahlblom, O., “The Effect of CFRP and CFRP/Concrete Interface Models when Modeling Retrofitted RC Beams with FEM,” Composite Structures, V. 92, No. 6, 2010, pp. 1391-1398. doi: 10.1016/j.compstruct.2009.11.008

25. Hawileh, R., “Nonlinear Finite Element Modeling of RC Beams Strengthened with NSM FRP Rods,” Construction and Building Materials, V. 27, No. 1, 2012, pp. 461-471. doi: 10.1016/j.conbuildmat.2011.07.018

26. Chellapandian, M., and Prakash, S. S., “Axial Compression-Flexure Interaction Behavior of Hybrid FRP Strengthened Columns,” ACI Structural Journal, V. 116, No. 2, 2019, pp. 125-138. doi: 10.14359/51710877

27. ACI Committee 440, “Guide for the Design and Construction of Externally Bonded FRP System for Strengthening Concrete Structures (ACI 440.2R-17),” American Concrete Institute, Farmington Hills, MI, 2017, 112 pp.

28. Chellapandian, M., and Prakash, S. S., “Rapid Repair of Severely Damaged Reinforced Concrete Columns under Combined Axial Compression and Flexure: An Experimental Study,” Construction and Building Materials, V. 173, 2018, pp. 368-380. doi: 10.1016/j.conbuildmat.2018.04.037

29. Chellapandian, M.; Suriya Prakash, S.; and Sharma, A., “Strength and Ductility of Innovative Hybrid NSM Reinforced, and FRP Confined Short RC Columns under Axial Compression,” Composite Structures, V. 176, 2017, pp. 205-216. doi: 10.1016/j.compstruct.2017.05.033

30. Chellapandian, M.; Prakash, S. S.; and Sharma, A., “Axial Compression-Bending Interaction Behavior of Severely Damaged RC Columns Rapid Repaired and Strengthened Using Hybrid FRP Composites,” Construction and Building Materials, V. 195, 2019, pp. 390-404. doi: 10.1016/j.conbuildmat.2018.11.090

31. Chellapandian, M.; Prakash, S. S.; and Sharma, A., “Experimental Investigation on the Effectiveness of Hybrid FRP Strengthened RC Columns on Axial Compression - Bending Interaction Behavior,” Journal of Composites for Construction, ASCE, V. 23, No. 4, 2019, p. 04019025 doi: 10.1061/(ASCE)CC.1943-5614.0000952

32. Ozbolt, J., “MASA – Macroscopic Space Analysis. Internal Report,” Institute für Werkstoffe im Bauwesen, Universität Stuttgart, Stuttgart, Germany, 1998.

33. Bažant, Z. P., and Ozbolt, J., “Compression Failure of Quasi-Brittle Material: Nonlocal Microplane Model,” Journal of Engineering Mechanics, ASCE, V. 118, No. 3, 1992, pp. 540-556. doi: 10.1061/(ASCE)0733-9399(1992)118:3(540)

34. Ožbolt, J., and Reinhardt, H. W., “Numerical Study of Mixed Mode Fracture in Concrete,” International Journal of Fracture, V. 118, No. 2, 2002, pp. 145-162. doi: 10.1023/A:1022886127806

35. Ožbolt, J.; Li, Y. J.; and Kozar, I., “Microplane Model for Concrete with Relaxed Kinematic Constraint,” International Journal of Solids and Structures, V. 38, No. 16, 2001, pp. 2683-2711. doi: 10.1016/S0020-7683(00)00177-3

36. Ožbolt, J.; Mestrovic, D.; Li, Y. J.; and Eligehausen, R., “Compression Failure – Beams Made of Different Concrete Types and Sizes,” Journal of Structural Engineering, ASCE, V. 126, No. 2, 2000, pp. 200-209. doi: 10.1061/(ASCE)0733-9445(2000)126:2(200)

37. Mondal, T. G., and Prakash, S. S., “Non-Linear Finite Element Analysis of RC Bridge Columns under Torsion with and without Axial Compression,” Journal of Bridge Engineering, ASCE, V. 21, No. 2, 2016, p. 04015037 doi: 10.1061/(ASCE)BE.1943-5592.0000798

38. Yao, L., and Wu, G., “Fiber-Element Modeling for Seismic Performance of Square RC Bridge Columns Retrofitted with NSM BFRP Bars and/or BFRP Sheet Confinement,” Journal of Composites for Construction, ASCE, V. 20, No. 4, 2016, p. 04016001 doi: 10.1061/(ASCE)CC.1943-5614.0000652

39. Chellapandian, M.; Prakash, S. S.; and Rajagopal, A., “Analytical and Finite Element Studies on the Behavior of Hybrid FRP Strengthened RC Column Elements under Axial and Eccentric Compression,” Composite Structures, V. 184, 2018, pp. 234-248. doi: 10.1016/j.compstruct.2017.09.109

40. Rousakis, T. C.; Karabinis, A. I.; and Kiousis, P. D., “FRP-Confined Concrete Members: Axial Compression Experiments and Plasticity Modeling,” Engineering Structures, V. 29, No. 7, 2007, pp. 1343-1353. doi: 10.1016/j.engstruct.2006.08.006

41. Lim, J. C.; Ozbakkaloglu, T.; Gholampour, A.; Bennett, T.; and Sadeghi, R., “Finite-Element Modeling of Actively Confined Normal-Strength and High-Strength Concrete under Uniaxial, Biaxial, and Triaxial Compression,” Journal of Structural Engineering, ASCE, V. 142, No. 11, 2016, p. 04016113 doi: 10.1061/(ASCE)ST.1943-541X.0001589

42. Bazant, Z. P., and Oh, B. H., “Crack Band Theory for Fracture of Concrete,” Materials and Structures, V. 16, No. 93, 1983, pp. 155-177.

43. Lettow, S., “Ein Verbundelement für nichtlineare Finite Elemente Analysen – Anwendung auf Übergreifungsstöße,” dissertation, IWB Universität Stuttgart, Stuttgart, Germany, 2007.

44. Sena-Cruz, J., and Barros, J. A. O., “Modeling of Bond between Near-Surface Mounted CFRP Laminate Strips and Concrete,” Computers and Structures, V. 82, No. 17-19, 2004, pp. 1513-1521. doi: 10.1016/j.compstruc.2004.03.047


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer