Title:
Strength Recovery Through Nanosilica Coated Polypropylene Fiber Reinforcement
Author(s):
Su-Jin Lee, Shiho Kawashima, and Jong-Pil Won
Publication:
Symposium Paper
Volume:
335
Issue:
Appears on pages(s):
63-82
Keywords:
fiber reinforced; nano silica; polypropylene fiber; self-healing; sol-gel; strength
DOI:
10.14359/51720216
Date:
9/20/2019
Abstract:
In this study, nanosilica was applied to the surface of polypropylene (PP) fibers to introduce self-healing abilities when incorporated into cement-composites. When the fiber is at the site of a crack, the nanosilica can form additional hydration products through pozzolanic reaction to effectively seal the crack. Nanosilica was synthesized onto the fibers through a sol-gel process. Then the fibers were dried at room temperature or 50°C (122°F) to remove the excess solution and adhere the nanosilica particles onto the fiber surface. The existence of nanosilica was confirmed by observing the mass change before and after the sol-gel process, water absorption, soluble matter loss and microscopy. The self-healing performance of cement-composites reinforced with treated and untreated macro and micro PP fibers at dosages of 1.8kg/m3 (3.0lb/yd3) and 0.9kg/m3 (1.5lb/yd3), respectively, were evaluated through flexural strength testing according to ASTM C348. To evaluate strength recovery, samples were loaded to 60% of the peak load to induce cracking. The cracked specimens were cured for 28 days under laboratory conditions to undergo self-healing. A significant recovery in flexural strength (112.8%) was observed by using nanosilica treated micro PP fibers dried at room temperature.