Title:
Shear Strength of Prestressed Concrete Beams Considering Bond Mechanism in Reinforcement
Author(s):
Deuckhang Lee, Sun-Jin Han, Hyunjin Ju, and Kang Su Kim
Publication:
Structural Journal
Volume:
118
Issue:
3
Appears on pages(s):
267-277
Keywords:
aggregate interlocking; concentration; crack; flexure; prestressed concrete; shear
DOI:
10.14359/51730531
Date:
5/1/2021
Abstract:
According to traditional theory, there should be shear stresses in the cracked tension zone due to the presence of bond between longitudinal tension reinforcements and surrounding concrete. To investigate the effect of this bond mechanism on shear behaviors of prestressed concrete (PSC) members with and without shear reinforcement, the dual potential capacity model (DPCM) was adopted in this study. The size effect typically observed in large PSC members was also considered in the proposed method by addressing the shear crack concentration concept. Verifications of the proposed model were conducted using the extensive shear database of PSC members with various material properties and geometrical details. As an extreme case, the perfect-slip behavior (no bond condition) between a prestressing strand and surrounding concrete in unbonded post-tensioned (UPT) concrete members was considered in the proposed model, and their analytical results were used to identify how the bond mechanism affects the shear strengths and failure modes of PSC members.
Related References:
1. Lee, D. H.; Han, S. J.; and Kim, K. S., “Dual Potential Capacity Model for Reinforced Concrete Beams Subjected to Shear,” Structural Concrete, V. 17, No. 3, 2016, pp. 443-456. doi: 10.1002/suco.201500165
2. Lee, D. H.; Han, S. J.; Hwang, J. H.; Ju, H.; and Kim, K. S., “Simplification and Verification of Dual Potential Capacity Model for Reinforced Concrete Beams Subjected to Shear,” Structural Concrete, V. 18, No. 2, 2017, pp. 259-277. doi: 10.1002/suco.201600055
3. Lee, D. H.; Han, S. J.; Kim, K. S.; and LaFave, J. M., “Shear Strength of Reinforced Concrete Beams Strengthened in Shear Using Externally-Bonded FRP Composites,” Composite Structures, V. 173, No. 1, 2017, pp. 177-187. doi: 10.1016/j.compstruct.2017.04.025
4. Lee, D. H.; Han, S. J.; Kim, K. S.; and LaFave, J. M., “Shear Capacity of Steel Fiber-Reinforced Concrete Beams,” Structural Concrete, V. 18, No. 2, 2017, pp. 278-291. doi: 10.1002/suco.201600104
5. Lee, D. H.; Kim, K. S.; Han, S. J.; Zhang, D.; and Kim, J., “Dual Potential Capacity Model for Reinforced Concrete Short and Deep Beams Subjected to Shear,” Structural Concrete, V. 19, No. 1, 2018, pp. 76-85. doi: 10.1002/suco.201700202
6. Lee, D. H.; Han, S. J.; Ju, H.; Zhang, D.; and Kim, K. S., “Shear Strength Model for Prestressed Concrete Beams with Steel Fibers Failed in Shear,” Magazine of Concrete Research, 2021, pp. 1-12. doi: 10.1680/jmacr.19.00391
7. Lee, D. H.; Han, S. J.; Joo, H. E.; Kim, K. S.; Zhang, D.; and Kim, J., “Shear Crack Concentration in Reinforced Concrete Beams Subjected to Combined Shear and Flexure,” Advances in Structural Engineering, V. 23, No. 11, 2020, pp. 2305-2317. doi: 10.1177/1369433219895911
8. Choi, K. K.; Park, H. G.; and Wight, J. K., “Unified Shear Strength Model for Reinforced Concrete Beams—Part I: Development,” ACI Structural Journal, V. 104, No. 2, Mar.-Apr. 2007, pp. 142-152.
9. Kani, G. N. J., “The Riddle of Shear Failure and Its Solution,” ACI Journal Proceedings, V. 61, No. 4, Apr. 1964, pp. 441-468.
10. Kani, G. N. J., “How Safe Are Our Large Reinforced Concrete Beams?,” ACI Journal Proceedings, V. 64, No. 3, Mar. 1967, pp. 128-141.
11. Comité Euro-International du Béton (CEB), CEB-FIP Model Code for Concrete Structures, third edition, Paris, France, 1978.
12. Collins, M. P., and Mitchell, D., Prestressed Concrete Structures, Prentice-Hall, Upper Saddle River, NJ, 1991, 766 pp.
13. Vecchio, F. J., and Collins, M. P., “Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal Proceedings, V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231.
14. Vecchio, F. J., “Disturbed Stress Field Model for Reinforced Concrete: Formulation,” Journal of Structural Engineering, ASCE, V. 126, No. 9, 2000, pp. 1070-1077. doi: 10.1061/(ASCE)0733-9445(2000)126:9(1070)
15. Han, S. J.; Lee, D. H.; Kim, K. S.; Seo, S. Y.; Moon, J. H.; and Monteiro, P. J. M., “Degradation of Flexural Strength in Reinforced Concrete Members Caused by Steel Corrosion,” Construction and Building Materials, V. 54, No. 1, 2014, pp. 572-583. doi: 10.1016/j.conbuildmat.2013.12.101
16. Maaddawy, T. E.; Soudki, K.; and Topper, T., “Analytical Model to Predict Nonlinear Flexural Behavior of Corroded Reinforced Concrete Beams,” ACI Structural Journal, V. 102, No. 4, July-Aug. 2005, pp. 550-559.
17. Lee, D. H., and Kim, K. S., “Flexural Strength of Prestressed Concrete Members with Unbonded Tendons,” Structural Engineering and Mechanics, V. 38, No. 5, 2011, pp. 675-696. doi: 10.12989/sem.2011.38.5.675
18. Kim, K. S., and Lee, D. H., “Flexural Behavior Model for Post-Tensioned Concrete Members with Unbonded Tendons,” Computers and Concrete, V. 10, No. 3, 2012, pp. 241-258. doi: 10.12989/cac.2012.10.3.241
19. Kim, K. S., and Lee, D. H., “Nonlinear Analysis Method for Continuous Post-Tensioned Concrete Members with Unbonded Tendons,” Engineering Structures, V. 40, No. 1, 2012, pp. 487-500. doi: 10.1016/j.engstruct.2012.03.021
20. EN 1992-1-1:2004, Eurocode 2: Design of Cocnrete Structures – Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium, 2004.
21. Comité Euro-International du Béton (CEB), CEB-FIP Model Code, Thomas Telford, London, UK., 1991.
22. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.
23. Dowell, R. K., and Auer, R., “Flexure-Shear Behavior of Precast Concrete Deck Panels with Cast-in-Place Concrete Topping,” PCI Journal, V. 56, No. 3, 2011, pp. 60-74. doi: 10.15554/pcij.06012011.60.74
24. Tan, K. H.; Teng, S.; Kong, F. K.; and Lu, H. Y., “Main Tension Steel in High-Strength Concrete Deep and Short Beams,” ACI Structural Journal, V. 94, No. 6, Nov.-Dec. 1997, pp. 752-764.
25. Sörensen, H. C., “Shear Tests on 12 Reinforced Concrete T-Beams,” Report R60, Structural Research Laboratory, Technical University of Denmark, Kongens Lyngby, Denmark, 1974.
26. Cavagnis, F.; Fernández Ruiz, M.; and Muttoni, A., “An Analysis of the Shear Transfer Actions in Reinforced Concrete Members without Transverse Reinforcement Based on Refined Experimental Measurements,” Structural Concrete, V. 19, No. 1, 2018, pp. 49-64. doi: 10.1002/suco.201700145
27. Muttoni, A., and Fernández Ruiz, M., “Shear Strength of Members without Transverse Reinforcement as Function of Critical Shear Crack Width,” ACI Structural Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 163-172.
28. Muttoni, A., and Fernández Ruiz, M., “From Experimental Evidence to mechanical Modeling and Design Expressions: The Critical Shear Crack Theory for Shear Design,” Structural Concrete, V. 20, No. 4, 2019, pp. 1464-1480. doi: 10.1002/suco.201900193
29. Vas Rodrigues, R., “Shear Strength of Reinforced Concrete Bridge Deck Slabs,” PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2007, 293 pp.
30. Collins, M. P.; Bentz, E. C.; and Sherwood, E. G., “Where is Shear Reinforcement Required? Review of Research Results and Design Procedures,” ACI Structural Journal, V. 105, No. 5, Mar.-Apr. 2008, pp. 590-599.
31. Sherwood, E. G., “One-Way Shear Behaviour of Large, Lightly Reinforced Concrete Beams and Slabs,” PhD thesis, Department of Civil Engineering, University of Toronto, Toronto, ON, Canada, 2008, 332 pp.
32. Collins, M. P., and Kuchma, D. A., “How Safe Are Our Large, Lightly-Reinforced Concrete Beams, Slabs and Footings?” ACI Structural Journal, V. 96, No. 4, July-Aug. 1999, pp. 482-490.
33. Bentz, E. C.; Vecchio, F. J.; and Collins, M. P., “Simplified Modified Compression Field Theory for Calculating the Shear Strength of Reinforced Concrete Elements,” ACI Structural Journal, V. 103, No. 4, July-Aug. 2006, pp. 614-624.
34. Sherwood, E. G.; Bentz, E. C.; and Collins, M. P., “Effect of Aggregate Size on Beam-Shear Strength of Thick Slabs,” ACI Structural Journal, V. 104, No. 2, Mar.-Apr. 2007, pp. 180-191.
35. Janaka Perera, S. V. T., and Mutsuyoshi, H., “Shear Behavior of Reinforced High-Strength Concrete Beams,” ACI Structural Journal, V. 110, No. 1, Jan.-Feb. 2013, pp. 43-52.
36. Park, H. G.; Choi, K. K.; and Wight, J. K., “Strain-Based Shear Strength Model for Slender Beams without Web Reinforcement,” ACI Structural Journal, V. 103, No. 6, Nov.-Dec. 2006, pp. 783-793.
37. Kupfer, H.; Hilsdorf, H. K.; and Rüsch, H., “Behavior of Concrete under Biaxial Stresses,” ACI Journal Proceedings, V. 66, No. 8, 1969, pp. 656-666.
38. Xie, L.; Bentz, E. C.; and Collins, M. P., “Influence of Aixal Stress on Shear Response of Reinforced Concrete Elements,” ACI Structural Journal, V. 108, No. 6, Nov.-Dec. 2011, pp. 745-754.
39. Tasuji, M. E.; Slate, F. O.; and Nilson, A. H., “Stress-Strain Response and Fracture of Concrete in Biaxial Loading,” ACI Journal Proceedings, V. 75, No. 7, July 1978, pp. 306-312.
40. Voyiadjis, G. Z., and Abulebdah, T. M., “Biaxial Testing of Repaired Concrete,” ACI Materials Journal, V. 89, No. 6, Nov.-Dec. 1992, pp. 564-572.
41. Reineck, K. H., “Ultimate Shear Force of Structural Concrete Members without Transverse Reinforcement Derived from Mechanical Model,” ACI Structural Journal, V. 88, No. 5, Sept.-Dec. 1991, pp. 592-602.
42. Lee, D. H.; Park, M. K.; Joo, H. E.; Han, S. J.; and Kim, K. S., “Strengths of Thick Prestressed Precast Hollow-Core Slab Members Strengthened in Shear,” ACI Structural Journal, V. 117, No. 2, Mar. 2020, pp. 129-140. doi: 10.14359/51720203
43. Park, M. K.; Lee, D. H.; Han, S. J.; and Kim, K. S., “Web-Shear Capacity of Thick Precast Prestressed Hollow-Core Slab Units Produced by Extrusion Method,” International Journal of Concrete Structures and Materials, V. 13, No. 1, 2019, pp. 7-14. doi: 10.1186/s40069-018-0288-x
44. Frosch, A. K., “Behavior of Large-Scale Reinforced Concrete Beams with Minimum Shear Reinforcement,” ACI Structural Journal, V. 97, No. 6, Nov.-Dec. 2000, pp. 814-820.
45. Rahal, K. N., “Evaluation of AASHTO-LRFD General Procedure for Torsion and Combined Loading,” ACI Structural Journal, V. 103, No. 5, Sept.-Oct. 2006, pp. 683-692.
46. Kuchma, D.; Hawkins, N. M.; Kim, S.; Sun, S.; and Kim, K. S., “Simplified Shear Provisions of the AASHTO LRFD Bridge Design Specifications,” PCI Journal, V. 53, No. 3, 2008, pp. 53-73. doi: 10.15554/pcij.05012008.53.73
47. Bairán, J. M.; Menduiña, R.; Marí, A.; and Cladera, A., “Shear Strength of Non-Slender Reinforced Concrete Beams,” ACI Structural Journal, V. 117, No. 2, Mar. 2020, pp. 277-289.
48. Reineck, K.-H.; Bentz, E. C.; Fitik, B.; Kuchma, D. A.; and Bayrak, O., “ACI-DAfStb Database of Shear Tests on Slender Reinforced Concrete Beams without Stirrups,” ACI Structural Journal, V. 110, No. 5, Sept.-Oct. 2013, pp. 867-875.
49. Reineck, K.-H.; Bentz, E.; Fitik, B.; Kuchma, D. A.; and Bayrak, O., “ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups,” ACI Structural Journal, V. 111, No. 5, Sept.-Oct. 2014, pp. 1147-1156. doi: 10.14359/51686819
50. Dunkelberg, D.; Sneed, L. H.; Zilch, K.; and Reineck, K.-H., “The 2015 ACI-DAfStb Database of Shear Tests on Slender Prestressed Concrete Beams without Stirrups—Overview and Evaluation of Current Design Approaches,” Structural Concrete, V. 19, No. 6, 2018, pp. 1740-1759. doi: 10.1002/suco.201700216
51. Yerzhanov, M., and Lee, D. H., “Shear Design Method of Eurasia for Concrete Members,” ACI Structural Journal, V. 117, No. 3, Mar. 2020, pp. 207-222. doi: 10.14359/51721371
52. Mihaylov, B.; Liu, J.; Simionopoulos, K.; Bentz, E. C.; and Collins, M. P., “Effect of Member Size and Tendon Layout on Shear Behavior of Post-Tensioned Beams,” ACI Structural Journal, V. 116, No. 4, July 2019, pp. 265-274. doi: 10.14359/51715633
53. Kordina, K.; Hegger, J.; and Teutsch, M., “Shear Strength of Prestressed Concrete Beams with Unbonded Tendons,” ACI Structural Journal, V. 82, No. 2, Mar.-Apr. 1989, pp. 143-149.