Title:
Roller-Compacted Concrete Pavements Produced Entirely with Steelmaking Slag Aggregates
Author(s):
R. V. M. Toffolo, T. K. Moro, D. H. Santos, L. C. B. Costa, J. C. Mendes, and R. A. F. Peixoto
Publication:
Materials Journal
Volume:
118
Issue:
4
Appears on pages(s):
51-64
Keywords:
expansibility; mechanical performance; pavement; roller-compacted concrete (RCC); steelmaking slag; sustainable concretes
DOI:
10.14359/51732791
Date:
7/1/2021
Abstract:
This work evaluates the technical feasibility of a roller-compacted concrete (RCC) pavement with complete replacement of natural aggregates by electric arc furnace slag (EAFS) or basic oxygen furnace slag (BOFS). The methodology includes, initially, the processing of the slags, and physical, chemical, and environmental characterization of the natural and slag aggregates. Subsequently, concrete mixtures were designed, and the compaction at optimum moisture was performed. Finally, the behavior of specimens under service and their mechanical performance were evaluated. Results show that both EAFS and BOFS enhance the RCC’s compressive strength and modulus of elasticity. The RCC produced with BOFS aggregates presented some expansibility due to its high contents of chemically active finer-than-75-µm materials and higher porosity. The EAFS aggregate was stable in durability analysis. In conclusion, through optimal mixture proportions and using compatible energy compression, it is viable to produce pavements with EAFS steelmaking slag in efficient, economical, and environmentally friendly manners. BOFS also showed promising results but requires further investigation.