Title:
Pozzolanic Reactivity Test of Supplementary Cementitious Materials
Author(s):
Antara Choudhary, Keshav Bharadwaj, Rita Maria Ghantous, O. Burkan Isgor, and W. Jason Weiss
Publication:
Materials Journal
Volume:
119
Issue:
2
Appears on pages(s):
255-268
Keywords:
calcined clay; fly ash; pozzolanic reaction; reactivity; silica fume; supplementary cementitious materials (SCMs); thermodynamic modeling
DOI:
10.14359/51734349
Date:
3/1/2022
Abstract:
The reactions of supplementary cementitious materials (SCMs) in concrete can be pozzolanic, hydraulic, or a combination of both. This paper focuses on the pozzolanic reactivity test (PRT) for SCMs that are blends of reactive aluminous and siliceous phases. The PRT quantifies reactivity by measuring heat release (Q) and calcium hydroxide (CH) consumption, which are interpreted using thermodynamic modeling. The robustness of the PRT is examined by experimentally varying the CH-to-SCM ratio, solution-to-solid ratio, sulfate content, alkali type (Na versus K), and alkali content. This paper also assesses similarities and differences between the PRT and the R3 test (ASTM C1897). It was found that sulfates, which are used in the R3 test, did not impact the siliceous reactions; however, they led to the preferential reaction with aluminous phases to form monosulfoaluminates and ettringite. A generalized relationship for the degree of reactivity is proposed as a function of Q and CH consumption.
Related References:
1. Neville, A. M., Properties of Concrete, third edition, Pitman Publishing, London, UK. 1981, 791 pp.
2. Mindess, S.; Young, J. F.; and Darwin, D., Concrete, second edition, Prentice Hall, Hoboken, NJ, 2003, 644 pp.
3. Barnes, P., and Bensted, J., Structure and Performance of Cements, CRC Press, Boca Raton, FL, 2002, 584 pp.
4. Barger, G. S.; Hansen, E. R.; Wood, M. R.; Neary, T.; Beech, D. J.; and Jaquier, D., “Production and Use of Calcined Natural Pozzolans in Concrete,” Cement, Concrete and Aggregates, V. 23, No. 2, 2001, pp. 73-80. doi: 10.1520/CCA10478J
5. Uzal, B.; Turanli, L.; and Mehta, P. K., “High-Volume Natural Pozzolan Concrete for Structural Applications,” ACI Materials Journal, V. 104, No. 5, Sept.-Oct. 2007, pp. 535-538.
6. ASTM C989/C989M-18, “Standard Specification for Slag Cement for Use in Concrete and Mortars,” ASTM International, West Conshohocken, PA, 2018, 7 pp.
7. ACI Committee 234, “Guide for the Use of Silica Fume in Concrete (ACI 234R-06),” American Concrete Institute, Farmington Hills, MI, 2006, 63 pp.
8. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, Dec. 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001
9. Juenger, M. C. G., and Siddique, R., “Recent Advances in Understanding the Role of Supplementary Cementitious Materials in Concrete,” Cement and Concrete Research, V. 78, Part A, Dec. 2015, pp. 71-80. doi: 10.1016/j.cemconres.2015.03.018
10. Khatri, R. P.; Sirivivatnanon, V.; and Gross, W., “Effect of Different Supplementary Cementitious Materials on Mechanical Properties of High Performance Concrete,” Cement and Concrete Research, V. 25, No. 1, Jan. 1995, pp. 209-220. doi: 10.1016/0008-8846(94)00128-L
11. Juenger, M. C. G.; Snellings, R.; and Bernal, S. A., “Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights,” Cement and Concrete Research, V. 122, Aug. 2019, pp. 257-273. doi: 10.1016/j.cemconres.2019.05.008
12. Justice, J. M., “Evaluation of Metakaolins for Use as Supplementary Cementitious Materials,” MSc thesis, Georgia Institute of Technology, Atlanta, GA, 2005, 134 pp.
13. Papadakis, V. G., and Tsimas, S., “Supplementary Cementing Materials in Concrete: Part I: Efficiency and Design,” Cement and Concrete Research, V. 32, No. 10, Oct. 2002, pp. 1525-1532. doi: 10.1016/S0008-8846(02)00827-X
14. Papadakis, V. G.; Antiohos, S.; and Tsimas, S., “Supplementary Cementing Materials in Concrete: Part II: A Fundamental Estimation of the Efficiency Factor,” Cement and Concrete Research, V. 32, No. 10, Oct. 2002, pp. 1533-1538. doi: 10.1016/S0008-8846(02)00829-3
15. Ghrici, M.; Kenai, S.; and Said-Mansour, M., “Mechanical Properties and Durability of Mortar and Concrete Containing Natural Pozzolana and Limestone Blended Cements,” Cement and Concrete Composites, V. 29, No. 7, Aug. 2007, pp. 542-549. doi: 10.1016/j.cemconcomp.2007.04.009
16. De Weerdt, K.; Justnes, H.; Kjellsen, K. O.; and Sellevold, E., “Fly Ash-Limestone Ternary Composite Cements: Synergetic Effect at 28 Days,” Nordic Concrete Research, V. 42, No. 4, 2010, pp. 51-70.
17. Ahmaruzzaman, M., “A Review on the Utilization of Fly Ash,” Progress in Energy and Combustion Science, V. 36, No. 3, June 2010, pp. 327-363. doi: 10.1016/j.pecs.2009.11.003
18. Siddique, R., “Utilization of Silica Fume in Concrete: Review of Hardened Properties,” Resources, Conservation and Recycling, V. 55, No. 11, Sept. 2011, pp. 923-932. doi: 10.1016/j.resconrec.2011.06.012
19. Deschner, F.; Lothenbach, B.; Winnefeld, F.; and Neubauer, J., “Effect of Temperature on the Hydration of Portland Cement Blended with Siliceous Fly Ash,” Cement and Concrete Research, V. 52, Oct. 2013, pp. 169-181. doi: 10.1016/j.cemconres.2013.07.006
20. Vessalas, K.; Thomas, P. S.; Ray, A. S.; Guerbois, J.-P.; Joyce, P.; and Haggman, J., “Pozzolanic Reactivity of the Supplementary Cementitious Material Pitchstone Fines by Thermogravimetric Analysis,” Journal of Thermal Analysis and Calorimetry, V. 97, No. 1, July 2009, Article No. 71. doi: 10.1007/s10973-008-9708-5
21. House, M.; Di Bella, C.; Sun, H.; Zima, G.; Barcelo, L.; and Weiss, W. J., “Influence of Slag Aggregate Production on Its Potential for Use in Internal Curing,” Transportation Research Record: Journal of the Transportation Research Board, V. 2441, No. 1, 2014, pp. 105-111. doi: 10.3141/2441-14
22. Menéndez, G.; Bonavetti, V.; and Irassar, E. F., “Strength Development of Ternary Blended Cement with Limestone Filler and Blast-Furnace Slag,” Cement and Concrete Composites, V. 25, No. 1, Jan. 2003, pp. 61-67. doi: 10.1016/S0958-9465(01)00056-7
23. Shi, C., “Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties,” Journal of Materials in Civil Engineering, ASCE, V. 16, No. 3, June 2004, pp. 230-236. doi: 10.1061/(ASCE)0899-1561(2004)16:3(230)
24. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, New York, NY, 2014, 684 pp.
25. De la Varga, I.; Castro, J.; Bentz, D. P.; Zunino, F.; and Weiss, J., “Evaluating the Hydration of High Volume Fly Ash Mixtures Using Chemically Inert Fillers,” Construction and Building Materials, V. 161, Feb. 2018, pp. 221-228. doi: 10.1016/j.conbuildmat.2017.11.132
26. Thomas, M., “Optimizing the Use of Fly Ash in Concrete,” Portland Cement Association, Skokie, IL, 2007, 24 pp.
27. ASTM C1709-18, “Standard Guide for Evaluation of Alternative Supplementary Cementitious Materials (ASCM) for Use in Concrete,” ASTM International, West Conshohocken, PA, 2018, 4 pp.
28. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, W. J., “Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements,” Transportation Research Record: Journal of the Transportation Research Board, V. 2629, No. 1, 2017, pp. 24-32. doi: 10.3141/2629-05
29. ASTM C311/C311M-18, “Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete,” ASTM International, West Conshohocken, PA, 2018, 11 pp.
30. ASTM C618-19, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2019, 5 pp.
31. Thorstensen, R. T., and Fidjestol, P., “Inconsistencies in the Pozzolanic Strength Activity Index (SAI) for Silica Fume According to EN and ASTM,” Materials and Structures, V. 48, No. 12, Dec. 2015, pp. 3979-3990. doi: 10.1617/s11527-014-0457-6
32. Bentz, D. P.; Durán-Herrera, A.; and Galvez-Moreno, D., “Comparison of ASTM C311 Strength Activity Index Testing versus Testing Based on Constant Volumetric Proportions,” Journal of ASTM International, V. 9, No. 1, 2011, pp. 1-7.
33. IS 1727-1967, “Methods of Test for Pozzolanic Materials,” Bureau of Indian Standards, New Delhi, India, 1967, 55 pp.
34. Butler, W. B., “A Critical Look at ASTM C 618 and C 311,” Cement, Concrete and Aggregates, V. 4, No. 2, 1982, pp. 68-72. doi: 10.1520/CCA10230J
35. Frattini, N., “Richerche sulla calce di idrolisi nelle paste di cemento,” Annali di Chimica, V. 39, 1949, pp. 616-620.
36. Snellings, R., and Scrivener, K. L., “Rapid Screening Tests for Supplementary Cementitious Materials: Past and Future,” Materials and Structures, V. 49, No. 8, Aug. 2016, pp. 3265-3279. doi: 10.1617/s11527-015-0718-z
37. BS EN 196-2:2005, “Methods of Testing Cement—Part 2: Chemical Analysis of Cement,” British Standards Institution, London, UK, 2005.
38. BS EN 197-1:2000, “Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements,” British Standards Institution, London, UK, 2000.
39. Ferraz, E.; Andrejkovičová, S.; Hajjaji, W.; Velosa, A. L.; Silva, A. S.; and Rocha, F., “Pozzolanic Activity of Metakaolins by the French Standard of the Modified Chapelle Test: A Direct Methodology,” Acta Geodynamica et Geomaterialia, V. 12, No. 3, 2015, pp. 289-298. doi: 10.13168/AGG.2015.0026
40. Raverdy, M.; Brivot, F.; Paillere, A. M.; and Dron, R., “Appréciation de l’activité pouzzolanique de constituents secondaires,” Proceedings, 7th International Congress on the Chemistry of Cement, V. 3, 1980, pp. 36-41.
41. Chapelle, J., “Attaque sulfo-calcique des laitiers et des pouzzolanes,” Imprimerie Centrale de l’Ortois-Orras, 1958, 63 pp.
42. Avet, F.; Snellings, R.; Alujas Diaz, A.; Ben Haha, M.; and Scrivener, K., “Development of a New Rapid, Relevant and Reliable (R3) Test Method to Evaluate the Pozzolanic Reactivity of Calcined Kaolinitic Clays,” Cement and Concrete Research, V. 85, July 2016, pp. 1-11. doi: 10.1016/j.cemconres.2016.02.015
43. ASTM C1897-20, “Standard Test Methods for Measuring the Reactivity of Supplementary Cementitious Materials by Isothermal Calorimetry and Bound Water Measurements,” ASTM International, West Conshohocken, PA, 2020, 5 pp.
44. Suraneni, P., and Weiss, J., “Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis,” Cement and Concrete Composites, V. 83, Oct. 2017, pp. 273-278.
45. Glosser, D.; Choudhary, A.; Isgor, O. B.; and Weiss, W. J., “Investigation of Reactivity of Fly Ash and Its Effect on Mixture Properties,” ACI Materials Journal, V. 116, No. 4, July 2019, pp. 193-200. doi: 10.14359/51716722
46. Azad, V. J.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Interpreting the Pore Structure of Hydrating Cement Phases through a Synergistic Use of the Powers-Brownyard Model, Hydration Kinetics, and Thermodynamic Calculations,” Advances in Civil Engineering Materials, V. 6, No. 1, 2017, pp. 1-16.
47. Isgor, O. B., and Weiss, W. J., “A Nearly Self-Sufficient Framework for Modelling Reactive-Transport Processes in Concrete,” Materials and Structures, V. 52, No. 1, Feb. 2019, Article No. 3, 17 pp. doi: 10.1617/s11527-018-1305-x
48. Glosser, D. B., “Equilibrium and Non-equilibrium Thermodynamic Modeling of Cement Pastes Containing Supplementary Cementitious Materials,” PhD thesis, Oregon State University, Corvallis, OR, 2020, 206 pp.
49. Ramanathan, S.; Kasaniya, M.; Tuen, M.; Thomas, M. D. A.; and Suraneni, P., “Linking Reactivity Test Outputs to Properties of Cementitious Pastes Made with Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 114, Nov. 2020, p. 103742. doi: 10.1016/j.cemconcomp.2020.103742
50. Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; and Weiss, J., “New Insights from Reactivity Testing of Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 103, Oct. 2019, pp. 331-338. doi: 10.1016/j.cemconcomp.2019.05.017
51. Suraneni, P.; Fu, T.; Azad, V. J.; Isgor, O. B.; and Weiss, J., “Pozzolanicity of Finely Ground Lightweight Aggregates,” Cement and Concrete Composites, V. 88, Apr. 2018, pp. 115-120. doi: 10.1016/j.cemconcomp.2018.01.005
52. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, J., “Role of Supplementary Cementitious Material Type in the Mitigation of Calcium Oxychloride Formation in Cementitious Pastes,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 10, Oct. 2018, p. 04018248. doi: 10.1061/(ASCE)MT.1943-5533.0002425
53. Bharadwaj, K.; Glosser, D.; Moradllo, M. K.; Isgor, O. B.; and Weiss, W. J., “Toward the Prediction of Pore Volumes and Freeze-Thaw Performance of Concrete Using Thermodynamic Modelling,” Cement and Concrete Research, V. 124, Oct. 2019, p. 105820. doi: 10.1016/j.cemconres.2019.105820
54. Glosser, D.; Azad, V. J.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Extension of Powers-Brownyard Model to Pastes Containing Supplementary Cementitious Materials,” ACI Materials Journal, V. 116, No. 5, Sept. 2019, pp. 205-216. doi: 10.14359/51714466
55. Moradllo, M. K.; Chung, C.-W.; Keys, M. H.; Choudhary, A.; Reese, S. R.; and Weiss, W. J., “Use of Borosilicate Glass Powder in Cementitious Materials: Pozzolanic Reactivity and Neutron Shielding Properties,” Cement and Concrete Composites, V. 112, Sept. 2020, p. 103640. doi: 10.1016/j.cemconcomp.2020.103640
56. Bharadwaj, K.; Ghantous, R. M.; Sahan, F.; Isgor, O. B.; and Weiss, W. J., “Predicting Pore Volume, Compressive Strength, Pore Connectivity, and Formation Factor in Cementitious Pastes Containing Fly Ash,” Cement and Concrete Composites, V. 122, Sept. 2021, p. 104113. doi: 10.1016/j.cemconcomp.2021.104113
57. Bharadwaj, K.; Isgor, B. O.; Weiss, J. W.; Chopperla, K. S. T.; Choudhary, A.; Vasudevan, G.; Glosser, D.; Ideker, J. H.; and Trejo, D., “A New Mixture Proportioning Method for Performance-Based Concrete,” ACI Materials Journal, V. 119, No. 2, Mar. 2022, pp. 207-220. doi: 10.14359/51734301
58. Isgor, B.; Ideker, J.; Trejo, D.; Weiss, J.; Bharadwaj, K.; Choudhary, A.; Chopperla, K. S. T.; Glosser, D.; and Vasudevan, G., “Development of a Performance-Based Mixture Proportioning Procedure for Concrete Incorporating Off-Spec Fly Ash,” Technical Report, Energy Power Research Institute, Washtington, DC, 2020, 78 pp.
59. Suraneni, P.; Azad, V. J.; Isgor, B. O.; and Weiss, W. J., “Calcium Oxychloride Formation in Pastes Containing Supplementary Cementitious Materials: Thoughts on the Role of Cement and Supplementary Cementitious Materials Reactivity,” RILEM Technical Letters, V. 1, 2016, pp. 24-30. doi: 10.21809/rilemtechlett.2016.7
60. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, W. J., “Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements,” Transportation Research Record: Journal of the Transportation Research Board, V. 2629, No. 1, 2017, pp. 24-32. doi: 10.3141/2629-05
61. Glosser, D.; Choudhary, A.; Ideker, J.; Trejo, D.; Weiss, W. J.; and Isgor, O. B., “Thermodynamic Investigation of Cementitious Mixtures Incorporating Off-Spec Fly Ashes,” 2019, 18 pp.
62. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, W. J., “Deicing Salts and Durability of Concrete Pavements and Joints,” Concrete International, V. 38, No. 4, Apr. 2016, pp. 48-54.
63. Esmaeeli, H. S.; Farnam, Y.; Bentz, D. P.; Zavattieri, P. D.; and Weiss, W. J., “Numerical Simulation of the Freeze–Thaw Behavior of Mortar Containing Deicing Salt Solution,” Materials and Structures, V. 50, No. 1, Feb. 2017, Article No. 96, 20 pp. doi: 10.1617/s11527-016-0964-8
64. Suraneni, P.; Monical, J.; Unal, E.; Farnam, Y.; and Weiss, W., “Calcium Oxychloride Formation Potential in Cementitious Pastes Exposed to Blends of Deicing Salt,” ACI Materials Journal, V. 114, No. 4, July-Aug. 2017, pp. 631-641. doi: 10.14359/51689607
65. Whatley, S. N.; Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, J., “Mitigation of Calcium Oxychloride Formation in Cement Pastes Using Undensified Silica Fume,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 10, Oct. 2017, p. 04017198. doi: 10.1061/(ASCE)MT.1943-5533.0002052
66. BS 8110-1, “Structural Use of Concrete—Part 1: Code of Practice for Design and Construction,” British Standards Institution, London, UK, 2007, 168 pp.
67. Lothenbach, B.; Kulik, D. A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G. D.; and Myers, R. J., “Cemdata 18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials,” Cement and Concrete Research, V. 115, Jan. 2019, pp. 472-506. doi: 10.1016/j.cemconres.2018.04.018
68. Lothenbach, B.; Matschei, T.; Möschner, G.; and Glasser, F. P., “Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement,” Cement and Concrete Research, V. 38, No. 1, Jan. 2008, pp. 1-18. doi: 10.1016/j.cemconres.2007.08.017
69. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, Feb. 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001
70. Kulik, D. A., “Improving the Structural Consistency of C-S-H Solid Solution Thermodynamic Models,” Cement and Concrete Research, V. 41, No. 5, May 2011, pp. 477-495. doi: 10.1016/j.cemconres.2011.01.012
71. Kulik, D. A.; Wagner, T.; Dmytrieva, S. V.; Kosakowski, G.; Hingerl, F. F.; Chudnenko, K. V.; and Berner, U. R., “GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes,” Computational Geosciences, V. 17, No. 1, Feb. 2013, pp. 1-24.
72. Antonovič, V.; Kerienė, J.; Boris, R.; and Aleknevičius, M., “The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure,” Procedia Engineering, V. 57, 2013, pp. 99-106. doi: 10.1016/j.proeng.2013.04.015
73. Taylor, H. F. W., Cement Chemistry, second edition, Thomas Telford Ltd., London, UK, 1997, 459 pp.
74. Garcés, P.; Alcocel, E. G.; Chinchón, S.; Andreu, C. G.; and Alcaide, J., “Effect of Curing Temperature in Some Hydration Characteristics of Calcium Aluminate Cement Compared with Those of Portland Cement,” Cement and Concrete Research, V. 27, No. 9, Sept. 1997, pp. 1343-1355. doi: 10.1016/S0008-8846(97)00136-1
75. Gosselin, C., “Microstructural Development of Calcium Aluminate Cement Based Systems with and without Supplementary Cementitious Materials,” PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2009, 234 pp.
76. Matschei, T.; Lothenbach, B.; and Glasser, F. P., “The AFm Phase in Portland Cement,” Cement and Concrete Research, V. 37, No. 2, Feb. 2007, pp. 118-130. doi: 10.1016/j.cemconres.2006.10.010