Strain Capacity of Strain-Hardening Ultra-High- Performance Concrete with Steel Fibers

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Strain Capacity of Strain-Hardening Ultra-High- Performance Concrete with Steel Fibers

Author(s): Antoine E. Naaman and Surendra P. Shah

Publication: Materials Journal

Volume: 119

Issue: 2

Appears on pages(s): 171-180

Keywords: slurry-infiltrated fiber concrete (SIFCON); slurry-infiltrated mat concrete (SIMCON); steel fiber; strain capacity in tension; strainhardening; tensile strength; ultra-high-performance concrete (UHPC); ultra-high-performance fiber-reinforced concrete

DOI: 10.14359/51734357

Date: 3/1/2022

Abstract:
The maximum post-cracking tensile strength (σpc) recorded in numerous investigations of ultra-high-performance fiber-reinforced concrete (UHP-FRC) remains mostly below 15 MPa, and the corresponding strain (εpc) below 4/1000. Both values are significantly reduced when the specimen size increases, as is needed for real structural applications. Test data on σpc and εpc from close to 100 series of direct tensile tests carried out in more than 20 investigations are analyzed. Factors influencing the strain capacity are identified. However, independently of the numerous parameters encountered, two observations emerged beyond all others: 1) the higher the post-cracking tensile strength (whichever way it is achieved), the higher the corresponding tensile strain; and 2) fibers mechanically deformed and/or with slip-hardening bond characteristics lead to an increase in strain capacity. A rational explanation for these observations is provided. The authors believe that achieving a large strain (εpc) at maximum stress is paramount for the successful applications of ultra-high-performance concrete in concrete structures not only for strength but, more critically, for ductility and energy absorption capacity improvements.

Related References:

Abrishambaf, A.; Pimentel, M.; and Nunes, S., 2021, “An Eco-Friendly UHPC for Structural Application: Tensile Mechanical Response,” Fibre Reinforced Concrete: Improvements and Innovations: RILEM-fib International Symposium on FRC (BEFIB) in 2020, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, and J. Navarro-Gregori, eds., Springer, Switzerland, pp. 1056-1067. doi: 10.1007/978-3-030-58482-5_93

ACI Committee 239, 2018, “Ultra-High-Performance Concrete: An Emerging Technology Report (ACI 239R-18),” American Concrete Institute, Farmington Hills, MI, 21 pp.

ACI Committee 544, 2015, “Report on Design and Construction of Steel Fiber-Reinforced Concrete Elevated Slabs (PRC-544.6-15),” American Concrete Institute, Farmington Hills, MI, 44 pp.

Aghdasi, P.; Heid, A. E.; and Chao, S.-H., 2016, “Developing Ultra-High-Performance Fiber-Reinforced Concrete for Large-Scale Structural Applications,” ACI Materials Journal, V. 113, No. 5, Sept.-Oct., pp. 559-570. doi: 10.14359/51689103

AFGC, 2013, “Ultra-High-Performance Fibre-Reinforced Concretes Recommendations,” Association Française de Génie Civil, Paris, France.

ASTM C1856/C1856M-17, 2017, “Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete,” ASTM International, West Conshohocken, PA, 4 pp.

Chandrangsu, K., and Naaman, A. E., 2003, “Comparison of Tensile and Bending Response of Three High Performance Fiber Reinforced Cement Composites,” Fourth International Workshop on High Performance Fiber-Reinforced Cement Composites (HPFRCC4), RILEM Proceedings Pro 30, A. E. Naaman and H. W. Reinhardt, eds., Ann Arbor, MI, June, pp. 259-274.

Chao, S.-H., 2021, private communication.

Chao, S.-H.; Liao, W.-C.; Wongtanakitcharoen, T.; and Naaman, A.E., 2007, “Large Scale Tensile Tests of High Performance Fiber Reinforced Cement Composites,” Fifth International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC5), RILEM Proceedings Pro 53, H. W. Reinhardt and A. E. Naaman, eds., Mainz, Germany, July, pp. 77-86.

Dobrusky, S., and Bernardi, S., 2017, “Uniaxial Tensile Tests for UHPFRC,” AFGC-ACI-fib-RILEM International Conference on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC 2017), RILEM Proceedings Pro 106, F. Toulemonde and J. Resplendino, eds., Montpellier, France, pp. 165-174.

Generosi, N.; Donnini, J.; and Corinaldesi, V., 2021, “Characterization of Ultra High Performance Fiber Reinforced Concrete (UHPFRC) Tensile Behaviour,” Fibre Reinforced Concrete: Improvements and Innovations: RILEM-fib International Symposium on FRC (BEFIB) in 2020, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, and J. Navarro-Gregori, eds., Springer, Switzerland, pp. 1068-1078. doi: 10.1007/978-3-030-58482-5_95

Graybeal, B. A., 2015, “Tensile Mechanical Response of Ultra-High-Performance Concrete,” Advances in Civil Engineering Materials, ASTM International, V. 4, No. 2, pp. 62-74. doi: 10.1520/ACEM20140029

Graybeal, B. A., and Baby, F., 2013, “Development of Direct Tension Test Method for Ultra-High- Performance Fiber-Reinforced Concrete,” ACI Materials Journal, V. 110, No. 2, Mar.-Apr., pp. 177-186.

Haber, Z. B.; De la Varga, I.; Graybeal, B. A.; Nakashoji, B.; and El-Helou, R., 2018, “Properties and Behavior of UHPC-Class Materials,” Technical Report, FHWA-HRT-18-036, Turner-Fairbank Highway Research Center, McLean, VA, 153 pp.

Homrich, J. R., and Naaman, A. E., 1988, “Stress-Strain Properties of SIFCON in Uniaxial Compression and Tension,” Report No. AFWL-TR-87-115, Department of Civil Engineering, University of Michigan, Ann Arbor, MI, Aug., 147 pp.

Kim, D. J., 2009, “Strain Rate Effect on High Performance Fiber Reinforced Cementitious Composites Using Slip Hardening High Strength Deformed Steel Fibers,” PhD thesis, University of Michigan, Ann Arbor, MI, 225 pp.

Kim, D.-J.; El-Tawil, S.; and Naaman, A. E., 2009a, “Rate-Dependent Tensile Behavior of High-Performance Fiber Reinforced Cementitious Composites,” Materials and Structures, V. 42, No. 3, Apr., pp. 399-414.

Kim, D. J.; Naaman, A. E.; and El-Tawil, S., 2008, “High Tensile Strength Strain-Hardening FRC Composites with Less Than 2% Fiber Content,” Proceedings, Second International Symposium, Ultra High Performance Concrete (UHPC), E. Fehling, M. Schmidt, and S. Sturwald, eds., Kassel, Germany, Mar., pp. 169-176.

Kim, D.-J.; Naaman, A. E.; and El-Tawil, S., 2009b, “High-Performance Fiber-Reinforced Cement Composites with Innovative Slip-Hardening Twisted Steel Fibers,” International Journal of Concrete Structures and Materials, V. 3, No. 2, Dec., pp. 119-126.

Krstulović-Opara, N., and Malak, S., 1997, “Tensile Behavior of Slurry Infiltrated Mat Concrete (SIMCON),” ACI Materials Journal, V. 94, No. 1, Jan.-Feb., pp. 39-46.

Li, V. C., and Wu, H.-C., 1992, “Conditions for Pseudo Strain-Hardening in Fiber Reinforced Brittle Matrix Composites,” Applied Mechanics Reviews, V. 45, No. 8, pp. 390-398. doi: 10.1115/1.3119767

Lopez, J. A.; Serna, P.; and Navarro-Gregori, J., 2017, “Advances in the Developments of the First UHPFRC Recommendations in Spain: Material Classification, Design and Characterization,” AFGC-ACI-fib-RILEM International Conference on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC 2017), RILEM Proceedings Pro 106, F. Toulemonde and J. Resplendino, eds., Montpellier, France, pp. 565-574.

Maya Duque, L. F., and Graybeal, B., 2017, “Correlation between the Material Tensile Properties and the Flexural Response of UHPFRC Panels,” AFGC-ACI-fib-RILEM International Conference on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC 2017), RILEM Proceedings Pro 106, F. Toulemonde and J. Resplendino, eds., Montpellier, France, pp. 385-392.

Naaman, A. E., 1987, “High Performance Fiber Reinforced Cement Composites,” Proceedings, IABSE Symposium on Concrete Structures for the Future, Paris, France, Sept., pp. 371-376.

Naaman, A. E., 1999, “Fibers with Slip-Hardening Bond,” Third International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 3), H. W. Reinhardt and A. E. Naaman, eds., RILEM Proceedings Pro 6, Mainz, Germany, May, pp. 371-385.

Naaman, A. E., 2012, “Fiber to Matrix Bond Mechanisms in FRC Composites,” Eighth RILEM International Symposium on Fibre Reinforced Concrete: Challenges and Opportunities (BEFIB 2012), RILEM Proceedings Pro 88, J. A. O. Barros, ed., Guimarães, Portugal, pp. 598-610.

Naaman, A. E., 2018, Fiber Reinforced Cement and Concrete Composites, Techno Press 3000, Sarasota, FL, 765 pp.

Naaman, A. E., 2021, “Slip-Hardening Bond: A Key to the Success of Ultra High Performance FRC Composites,” Fibre Reinforced Concrete: Improvements and Innovations: RILEM-fib International Symposium on FRC (BEFIB) in 2020, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, and J. Navarro-Gregori, eds., Springer, Switzerland, pp. 1079-1089. doi: 10.1007/978-3-030-58482-5_95

Naaman, A. E., and Homrich, J. R., 1985, “Properties of High-Strength Fiber Reinforced Concrete,” High-Strength Concrete, SP-87, H. Russel, ed., American Concrete Institute, Farmington Hills, MI, pp. 233-249.

Naaman, A. E., and Reinhardt, H. W., 2003a, “Setting the Stage: Toward Performance Based Classification of FRC Composites,” Fourth International Workshop on High Performance Fiber-Reinforced Cement Composites (HPFRCC4), RILEM Proceedings Pro 30, A. E. Naaman and H. W. Reinhardt, eds., Ann Arbor, MI, June, pp. 1-4.

Naaman, A. E., and Reinhardt, H. W., 2003b, “High Performance Fiber Reinforced Cement Composites HPFRCC-4: International RILEM Workshop,” Materials and Structures, V. 36, No. 10, Dec., pp. 710-712.

Naaman, A. E., and Reinhardt, H. W., 2006, “Proposed Classification of FRC Composites Based on their Tensile Response,” Materials and Structures, V. 39, No. 5, June, pp. 547-555. doi: 10.1617/s11527-006-9103-2

Naaman, A. E., and Shah, S. P., 1979, “Fracture and Multiple Cracking of Cementitious Composites,” ASTM Special Technical Publication, No. 678, pp. 183-201.

Najm, H. S., 1992, “Elastic Modulus of High Performance Fiber-Reinforced Cement-Based Composites,” PhD thesis, University of Michigan, Ann Arbor, MI, 229 pp.

Pyo, S., 2014, “Characteristics of Ultra High Performance Concrete Subjected to Dynamic Loading,” PhD thesis, University of Michigan, Ann Arbor, MI, 188 pp.

Pyo, S.; Wille, K.; El-Tawil, S.; and Naaman, A. E., 2015, “Strain Rate Dependent Properties of Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) under Tension,” Cement and Concrete Composites, V. 56, Feb., pp. 15-24. doi: 10.1016/j.cemconcomp.2014.10.002

Schmidt, M.; Leuthbecter, T.; Piortrovski, S.; and Wiens, U., 2017, “The German Guidline for Ultra-High Performance Concrete,” AFGC-ACI-fib-RILEM International Conference on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC 2017), RILEM Proceedings Pro 106, F. Toulemonde and J. Resplendino, eds., Montpellier, France, pp. 545-554.

Shao, Y., and Shah, S. P., 1997, “Mechanical Properties of PVA Fiber Reinforced Cement Composites Fabricated by Extrusion Processing,” ACI Materials Journal, V. 94, No. 6, Nov.-Dec., pp. 555-563.

Sujivorakul, C., 2002, “Development of High Performance Fiber-Reinforced Cement Composites Using Twisted Polygonal Fibers,” PhD thesis, University of Michigan, Ann Arbor, MI, 330 pp.

Sujivorakul, C., and Naaman, A. E., 2003, “Tensile Response of HPFRC Composites Using Twisted Polygonal Steel Fibers,” Innovations in Fiber-Reinforced Concrete for Value, SP-216, N. Banthia, M. Criswell, P. Tatnall, and K. Folliard, eds., American Concrete Institute, Farmington Hills, MI, pp. 161-179.

Sujivorakul, C., and Naaman, A. E., 2004, “Ultra High-Performance Fiber-Reinforced Cement Composites Using Hybridization of Twisted Steel Fibers and Micro Fibers,” Sixth International RILEM Symposium on Fibre-Reinforced Concretes (BEFIB 2004), RILEM Proceedings Pro 39, M. di Prisco, R. Felicetti, and G. A. Plizzari, eds., pp. 1401-1410.

Tadros, M., 2021, private communication about PCI UHPC project.

Wille, K., and Naaman, A. E., 2010a, “Bond-Slip Behavior of Steel Fibers Embedded in Ultra High-Performance Concrete,” Proceedings, 18th European Conference on Fracture and Damage of Advanced Fiber-Reinforced Cement-Based Materials, Contribution to ECF 18, V. Mechtcherine and M. Kaliske, eds., Dresden, Germany, Sept., pp. 99-111.

Wille, K., and Naaman, A. E., 2010b, “Fracture Energy of UHP-FRC Under Direct Tensile Loading,” Proceedings, Fracture Mechanics of Concrete and Concrete Structures (FraMCos-7), B. H. Oh, O. C. Choi, and L. Chung, eds., Jeju, South Korea, May, pp. 65-72.

Wille, K.; El-Tawil, S.; and Naaman, A. E., 2011a, “Strain Rate Dependent Tensile Behavior of Ultra-High Performance Fiber Reinforced Concrete,” High Performance Fiber Reinforced Cement Composites 6: HPFRCC 6, G. J. Parra-Montesinos, H. W. Reinhardt, and A. E. Naaman, eds., Ann Arbor, MI, pp. 381-387.

Wille, K.; El-Tawil, S.; and Naaman, A. E., 2014, “Properties of Strain Hardening Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) Under Direct Tensile Loading,” Cement and Concrete Composites, V. 48, Apr., pp. 53-56.

Wille, K.; Naaman, A. E.; and El-Tawil, S., 2011b, “Optimizing Ultra-High-Performance Fiber-Reinforced Concrete,” Concrete International, V. 33, No. 9, Sept., pp. 35-41.

Wille, K.; Xu, M.; El-Tawil, S.; and Naaman, A. E., 2016, “Dynamic Impact Factors of Strain Hardening UHP-FRC under Direct Tensile Loading at Low Strain Rates,” Materials and Structures, V. 49, No. 4, Apr., pp. 1351-1365. doi: 10.1617/s11527-015-0581-y

Xu, M., and Wille, K., 2015, “Fracture Energy of UHP-FRC Under Direct Tensile Loading Applied at Low Strain Rates,” Composites Part B: Engineering, V. 80, Oct., pp. 116-125. doi: 10.1016/j.compositesb.2015.05.031

Yu, K.-Q.; Lu, Z.-D.; Dai, J.-G.; and Shah, S. P., 2020, “Direct Tensile Properties and Stress–Strain Model of UHP-ECC,” Journal of Materials in Civil Engineering, ASCE, V. 32, No. 1, p. 0401


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer