Title:
Additives to Increase Carbonation Resistance of Slag Activated with Sodium Sulfate
Author(s):
Alaa M. Rashad
Publication:
Materials Journal
Volume:
119
Issue:
2
Appears on pages(s):
53-66
Keywords:
blast-furnace slag; carbonation depth; compressive strength; different additives; pH value; sodium sulfate
DOI:
10.14359/51734400
Date:
3/1/2022
Abstract:
The effect of a fixed ratio of different additives on the carbonation behavior of ground-granulated blast-furnace slag (shortened as slag) activated with a fixed concentration of Na2SO4 was investigated. Slag was activated by 1% (Na2O-equivalent) Na2SO4 (M0) and partially replaced with 10%, by weight, of one of the following additives: limestone powder (LS10), fly ash (FA10), portland cement (PC10), silica fume (SF10), metakaolin (MK10), and hydrated lime (HL10). The compressive strength values were measured and compared with those activated with the traditional common activators. After 28 days of curing, the pastes were exposed to 5% concentration of CO2 coupled with 20 ± 1°C and 65% surrounding temperature and relative humidity, respectively, for different durations of 2, 4, and 8 weeks. Compressive strength, pH value, and carbonation depth of carbonated specimens were determined and compared with noncarbonated ones exposed to the same conditions but at a natural CO2 concentration. The results were analyzed with special tools to determine the different phases. The results revealed that it is possible to increase the carbonation resistance of slag activated with Na2SO4 by using some additives. The specimens of LS10 exhibited the highest carbonation depth, while SF10 specimens exhibited the lowest carbonation depth. The remaining additives showed intermediate results between LS10 and SF10.
Related References:
1. Gagg, C. R., “Cement and Concrete as an Engineering Material: An Historic Appraisal and Case Study Analysis,” Engineering Failure Analysis, V. 40, 2014, pp. 114-140. doi: 10.1016/j.engfailanal.2014.02.004
2. Andrew, R. M., “Global CO2 Emissions from Cement Production,” Earth System Science Data, V. 10, No. 1, 2018, pp. 195-217. doi: 10.5194/essd-10-195-2018
3. Le Quéré, C.; et al., “Global Carbon Budget 2018,” Earth System Science Data, V. 10, No. 4, 2018, pp. 2141-2194. doi: 10.5194/essd-10-2141-2018
4. Rashad, A. M., “A Comprehensive Overview about the Influence of Different Additives on the Properties of Alkali-Activated Slag–A Guide for Civil Engineer,” Construction and Building Materials, V. 47, 2013, pp. 29-55. doi: 10.1016/j.conbuildmat.2013.04.011
5. Wang, L.; Yang, H. Q.; Dong, Y.; Chen, E.; and Tang, S. W., “Environmental Evaluation, Hydration, Pore Structure, Volume Deformation and Abrasion Resistance of Low Heat Portland (LHP) Cement-Based Materials,” Journal of Cleaner Production, V. 203, 2018, pp. 540-558. doi: 10.1016/j.jclepro.2018.08.281
6. Rashad, A. M., “A Brief on High-Volume Class F Fly Ash as Cement Replacement–A Guide for Civil Engineer,” International Journal of Sustainable Built Environment, V. 4, No. 2, 2015, pp. 278-306. doi: 10.1016/j.ijsbe.2015.10.002
7. Rashad, A. M., “An Overview on Rheology, Mechanical Properties and Durability of High-Volume Slag Used as a Cement Replacement in Paste, Mortar and Concrete,” Construction and Building Materials, V. 187, 2018, pp. 89-117. doi: 10.1016/j.conbuildmat.2018.07.150
8. Lee, H.-S.; Lim, S.-M.; and Wang, X.-Y., “Optimal Mixture Design of Low-CO2 High-Volume Slag Concrete Considering Climate Change and CO2 Uptake,” International Journal of Concrete Structures and Materials, V. 13, 2019, Article No. 56, 13 pp. doi: 10.1186/s40069-019-0359-7
9. Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; and Ling, Y., “Properties of Fresh and Hardened Fly Ash/Slag Based Geopolymer Concrete: A Review,” Journal of Cleaner Production, V. 270, 2020, Article No. 122389. doi: 10.1016/j.jclepro.2020.122389
10. Rashad, A. M., “Alkali-Activated Metakaolin: A Short Guide for Civil Engineer–An Overview,” Construction and Building Materials, V. 41, 2013, pp. 751-765. doi: 10.1016/j.conbuildmat.2012.12.030
11. Rashad, A. M., “A Comprehensive Overview About the Influence of Different Admixtures and Additives on the Properties of Alkali-Activated Fly Ash,” Materials & Design, V. 53, 2014, pp. 1005-1025. doi: 10.1016/j.matdes.2013.07.074
12. Zhang, J.; Shi, C.; Zhang, Z.; and Ou, Z., “Durability of Alkali-Activated Materials in Aggressive Environments: A Review on Recent Studies,” Construction and Building Materials, V. 152, 2017, pp. 598-613. doi: 10.1016/j.conbuildmat.2017.07.027
13. Rashad, A. M., “A Synopsis of Carbonation of Alkali-Activated Materials,” Green Materials, V. 7, No. 3, 2019, pp. 118-136. doi: 10.1680/jgrma.18.00052
14. Zhang, J.; Shi, C.; and Zhang, Z., “Effect of Na2O Concentration and Water/Binder Ratio on Carbonation of Alkali-Activated Slag/Fly Ash Cements,” Construction and Building Materials, V. 269, 2021, Article No. 121258. doi: 10.1016/j.conbuildmat.2020.121258
15. Nedeljković, M.; Ghiassi, B.; van der Laan, S.; Li, Z.; and Ye, G., “Effect of Curing Conditions on the Pore Solution and Carbonation Resistance of Alkali-Activated Fly Ash and Slag Pastes,” Cement and Concrete Research, V. 116, 2019, pp. 146-158. doi: 10.1016/j.cemconres.2018.11.011
16. He, J.; Gao, Q.; Wu, Y.; He, J.; and Pu, X., “Study on Improvement of Carbonation Resistance of Alkali-Activated Slag Concrete,” Construction and Building Materials, V. 176, 2018, pp. 60-67. doi: 10.1016/j.conbuildmat.2018.04.117
17. Lee, N. K.; Koh, K. T.; Kim, M. O.; An, G. H.; and Ryu, G. S., “Physicochemical Changes Caused by Reactive MgO in Alkali-Activated Fly Ash/Slag Blends under Accelerated Carbonation,” Ceramics International, V. 43, No. 15, 2017, pp. 12490-12496. doi: 10.1016/j.ceramint.2017.06.119
18. Bai, Y.-H.; Yu, S.; and Chen, W., “Experimental Study of Carbonation Resistance of Alkali-Activated Slag Concrete,” ACI Materials Journal, V. 116, No. 3, May 2019, pp. 95-104. doi: 10.14359/51715585
19. Robayo-Salazar, R. A.; Aguirre-Guerrero, A. M.; and de Gutiérrez, R. M., “Carbonation-Induced Corrosion of Alkali-Activated Binary Concrete Based on Natural Volcanic Pozzolan,” Construction and Building Materials, V. 232, 2020, Article No. 117189. doi: 10.1016/j.conbuildmat.2019.117189
20. Duan, P.; Yan, C.; Luo, W.; and Zhou, W., “Effects of Adding Nano-TiO2 on Compressive Strength, Drying Shrinkage, Carbonation and Microstructure of Fluidized Bed Fly Ash Based Geopolymer Paste,” Construction and Building Materials, V. 106, 2016, pp. 115-125. doi: 10.1016/j.conbuildmat.2015.12.095
21. Zhang, J.; Shi, C.; and Zhang, Z., “Carbonation Induced Phase Evolution in Alkali-Activated Slag/Fly Ash Cements: The Effect of Silicate Modulus of Activators,” Construction and Building Materials, V. 223, 2019, pp. 566-582. doi: 10.1016/j.conbuildmat.2019.07.024
22. Provis, J. L., and van Deventer, J. S. J., Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer Science & Business Media, Berlin, Germany, 2013, 388 pp. doi: 10.1007/978-94-007-7672-2
23. Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; and Illikainen, M., “One-Part Alkali-Activated Materials: A Review,” Cement and Concrete Research, V. 103, 2018, pp. 21-34. doi: 10.1016/j.cemconres.2017.10.001
24. Shi, C., and Fernández-Jiménez, A., “Stabilization/Solidification of Hazardous and Radioactive Wastes with Alkali-Activated Cements,” Journal of Hazardous Materials, V. 137, No. 3, 2006, pp. 1656-1663. doi: 10.1016/j.jhazmat.2006.05.008
25. Pacheco-Torgal, F.; Labrincha, J.; Leonelli, C.; Palomo, A.; and Chindaprasit, P., eds., Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Sawston, UK, 2014, 852 pp.
26. Assi, L. N.; Carter, K.; Deaver, E.; and Ziehl, P., “Review of Availability of Source Materials for Geopolymer/Sustainable Concrete,” Journal of Cleaner Production, V. 263, 2020, Article No. 121477. doi: 10.1016/j.jclepro.2020.121477
27. Habert, G.; d’Espinose de Lacaillerie, J.-B.; and Roussel, N., “An Environmental Evaluation of Geopolymer Based Concrete Production: Reviewing Current Research Trends,” Journal of Cleaner Production, V. 19, No. 11, 2011, pp. 1229-1238. doi: 10.1016/j.jclepro.2011.03.012
28. Wu, X.; Jiang, W.; and Roy, D. M., “Early Activation and Properties of Slag Cement,” Cement and Concrete Research, V. 20, No. 6, 1990, pp. 961-974. doi: 10.1016/0008-8846(90)90060-B
29. Wang, S.-D.; Scrivener, K. L.; and Pratt, P. L., “Factors Affecting the Strength of Alkali-Activated Slag,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 1033-1043. doi: 10.1016/0008-8846(94)90026-4
30. Rashad, A. M., “Influence of Different Additives on the Properties of Sodium Sulfate Activated Slag,” Construction and Building Materials, V. 79, 2015, pp. 379-389. doi: 10.1016/j.conbuildmat.2015.01.022
31. Rashad, A. M.; Bai, Y.; Basheer, P. A. M.; Collier, N. C.; and Milestone, N. B., “Chemical and Mechanical Stability of Sodium Sulfate Activated Slag after Exposure to Elevated Temperature,” Cement and Concrete Research, V. 42, No. 2, 2012, pp. 333-343. doi: 10.1016/j.cemconres.2011.10.007
32. Rashad, A. M.; Bai, Y.; Basheer, P. A. M.; Milestone, N. B.; and Collier, N. C., “Hydration and Properties of Sodium Sulfate Activated Slag,” Cement and Concrete Composites, V. 37, 2013, pp. 20-29. doi: 10.1016/j.cemconcomp.2012.12.010
33. Zhang, J.; Tan, H.; Bao, M.; Liu, X.; Luo, Z.; and Wang, P., “Low Carbon Cementitious Materials: Sodium Sulfate Activated Ultra-Fine Slag/Fly Ash Blends at Ambient Temperature,” Journal of Cleaner Production, V. 280, Part 1, 2021, Article No. 124363. doi: 10.1016/j.jclepro.2020.124363
34. ASTM C109/C109M-21, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2021, 12 pp.
35. Rashad, A. M., and Essa, G. M. F., “Effect of Ceramic Waste Powder on Alkali-Activated Slag Pastes Cured in Hot Weather after Exposure to Elevated Temperature,” Cement and Concrete Composites, V. 111, 2020, Article No. 103617. doi: 10.1016/j.cemconcomp.2020.103617
36. Rashad, A. M.; Hassan, A. A.; and Zeedan, S. R., “An Investigation on Alkali-Activated Egyptian Metakaolin Pastes Blended with Quartz Powder Subjected to Elevated Temperatures,” Applied Clay Science, V. 132-133, 2016, pp. 366-376. doi: 10.1016/j.clay.2016.07.002
37. Rashad, A. M., “An Exploratory Study on Sodium Sulfate Activated Slag Modified with Portland Cement,” Materials and Structures, V. 48, No. 12, 2015, pp. 4085-4095. doi: 10.1617/s11527-014-0468-3
38. Rashad, A. M., “An Exploratory Study on Sodium Sulphate-Activated Slag Blended with Portland Cement under the Effect of Thermal Loads,” Journal of Thermal Analysis and Calorimetry, V. 119, No. 3, 2015, pp. 1535-1545. doi: 10.1007/s10973-014-4345-7
39. Zhang, L. V.; Suleiman, A. R.; and Nehdi, M. L., “Self-Healing in Fiber-Reinforced Alkali-Activated Slag Composites Incorporating Different Additives,” Construction and Building Materials, V. 262, 2020, Article No. 120059. doi: 10.1016/j.conbuildmat.2020.120059
40. Rashad, A. M.; Morsi, W. M.; and Khafaga, S. A., “Effect of Limestone Powder on Mechanical Strength, Durability and Drying Shrinkage of Alkali-Activated Slag Pastes,” Innovative Infrastructure Solutions, V. 6, No. 2, 2021, Article No. 127, 12 pp. doi: 10.1007/s41062-021-00496-y
41. Yum, W. S.; Jeong, Y.; Song, H.; and Oh, J. E., “Recycling of Limestone Fines Using Ca(OH)2- and Ba(OH)2-Activated Slag Systems for Eco-Friendly Concrete Brick Production,” Construction and Building Materials, V. 185, 2018, pp. 275-284. doi: 10.1016/j.conbuildmat.2018.07.112
42. Ye, H.; Fu, C.; and Yang, G., “Influence of Dolomite on the Properties and Microstructure of Alkali-Activated Slag with and without Pulverized Fly Ash,” Cement and Concrete Composites, V. 103, 2019, pp. 224-232. doi: 10.1016/j.cemconcomp.2019.05.011
43. Wang, W.-C.; Wang, H.-Y.; and Lo, M.-H., “The Fresh and Engineering Properties of Alkali Activated Slag as a Function of Fly Ash Replacement and Alkali Concentration,” Construction and Building Materials, V. 84, 2015, pp. 224-229. doi: 10.1016/j.conbuildmat.2014.09.059
44. Gao, X.; Yu, Q. L.; and Brouwers, H. J. H., “Reaction Kinetics, Gel Character and Strength of Ambient Temperature Cured Alkali Activated Slag–Fly Ash Blends,” Construction and Building Materials, V. 80, 2015, pp. 105-115. doi: 10.1016/j.conbuildmat.2015.01.065
45. Rodrigue, A.; Duchesne, J.; Fournier, B.; Champagne, M.; and Bissonnette, B., “Alkali-Silica Reaction in Alkali-Activated Combined Slag and Fly Ash Concretes: The Tempering Effect of Fly Ash on Expansion and Cracking,” Construction and Building Materials, V. 251, 2020, Article No. 118968. doi: 10.1016/j.conbuildmat.2020.118968
46. Burciaga‐Díaz, O.; Escalante‐García, J. I.; Arellano‐Aguilar, R.; and Gorokhovsky, A., “Statistical Analysis of Strength Development as a Function of Various Parameters on Activated Metakaolin/Slag Cements,” Journal of the American Ceramic Society, V. 93, No. 2, 2010, pp. 541-547. doi: 10.1111/j.1551-2916.2009.03414.x
47. Burciaga-Díaz, O.; Gómez-Zamorano, L. Y.; and Escalante-García, J. I., “Influence of the Long Term Curing Temperature on the Hydration of Alkaline Binders of Blast Furnace Slag-Metakaolin,” Construction and Building Materials, V. 113, 2016, pp. 917-926. doi: 10.1016/j.conbuildmat.2016.03.111
48. Li, Z.; Nedeljković, M.; Chen, B.; and Ye, G., “Mitigating the Autogenous Shrinkage of Alkali-Activated Slag by Metakaolin,” Cement and Concrete Research, V. 122, 2019, pp. 30-41. doi: 10.1016/j.cemconres.2019.04.016
49. Bernal, S. A.; Provis, J. L.; Rose, V.; and Mejía de Gutierrez, R., “Evolution of Binder Structure in Sodium Silicate-Activated Slag-Metakaolin Blends,” Cement and Concrete Composites, V. 33, No. 1, 2011, pp. 46-54. doi: 10.1016/j.cemconcomp.2010.09.004
50. Akçaözoğlu, S., and Ulu, C., “Recycling of Waste PET Granules as Aggregate in Alkali-Activated Blast Furnace Slag/Metakaolin Blends,” Construction and Building Materials, V. 58, 2014, pp. 31-37. doi: 10.1016/j.conbuildmat.2014.02.011
51. Liu, Y.; Shi, C.; Zhang, Z.; Li, N.; and Shi, D., “Mechanical and Fracture Properties of Ultra-High Performance Geopolymer Concrete: Effects of Steel Fiber and Silica Fume,” Cement and Concrete Composites, V. 112, 2020, Article No. 103665. doi: 10.1016/j.cemconcomp.2020.103665
52. Ramezanianpour, A. A., and Moeini, M. A., “Mechanical and Durability Properties of Alkali Activated Slag Coating Mortars Containing Nanosilica and Silica Fume,” Construction and Building Materials, V. 163, 2018, pp. 611-621. doi: 10.1016/j.conbuildmat.2017.12.062
53. Liu, S.; Hao, Y.; and Ma, G., “Approaches to Enhance the Carbonation Resistance of Fly Ash and Slag Based Alkali-Activated Mortar-Experimental Evaluations,” Journal of Cleaner Production, V. 280, Part 1, 2021, Article No. 124321. doi: 10.1016/j.jclepro.2020.124321
54. Li, Z.; Pan, Z.; Liu, Y.; He, L.; Duan, W.; Collins, F.; and Sanjayan, J., “Effects of Mineral Admixtures and Lime on Disintegration of Alkali-Activated Slag Exposed to 50°C,” Construction and Building Materials, V. 70, 2014, pp. 254-261. doi: 10.1016/j.conbuildmat.2014.07.101
55. Park, J., and Kim, Y., “Improvement in Mechanical Properties by Supercritical Carbonation of Non-Cement Mortar Using Fly Ash and Blast Furnace Slag,” International Journal of Precision Engineering and Manufacturing, V. 15, No. 6, 2014, pp. 1229-1234. doi: 10.1007/s12541-014-0461-3
56. Samarakoon, M. H.; Ranjith, P. G.; Xiao, F.; Isaka, B. L. A.; and Gajanayake, S. M., “Carbonation-Induced Properties of Alkali-Activated Cement Exposed to Saturated and Supercritical CO2,” International Journal of Greenhouse Gas Control, V. 110, 2021, Article No. 103429. doi: 10.1016/j.ijggc.2021.103429
57. Bernal, S. A.; Mejía de Gutierrez, R.; Provis, J. L.; and Rose, V., “Effect of Silicate Modulus and Metakaolin Incorporation on the Carbonation of Alkali Silicate-Activated Slags,” Cement and Concrete Research, V. 40, No. 6, 2010, pp. 898-907. doi: 10.1016/j.cemconres.2010.02.003
58. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y.-B., “Resistance of Alkali-Activated Slag Concrete to Carbonation,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1277-1283. doi: 10.1016/S0008-8846(01)00574-9
59. Li, N.; Farzadnia, N.; and Shi, C., “Microstructural Changes in Alkali-Activated Slag Mortars Induced by Accelerated Carbonation,” Cement and Concrete Research, V. 100, 2017, pp. 214-226. doi: 10.1016/j.cemconres.2017.07.008
60. Li, Z., and Li, S., “Carbonation Resistance of Fly Ash and Blast Furnace Slag Based Geopolymer Concrete,” Construction and Building Materials, V. 163, 2018, pp. 668-680. doi: 10.1016/j.conbuildmat.2017.12.127
61. Nedeljković, M.; Šavija, B.; Zuo, Y.; Luković, M.; and Ye, G., “Effect of Natural Carbonation on the Pore Structure and Elastic Modulus of the Alkali-Activated Fly Ash and Slag Pastes,” Construction and Building Materials, V. 161, 2018, pp. 687-704. doi: 10.1016/j.conbuildmat.2017.12.005
62. Bernal, S. A., “Effect of the Activator Dose on the Compressive Strength and Accelerated Carbonation Resistance of Alkali Silicate-Activated Slag/Metakaolin Blended Materials,” Construction and Building Materials, V. 98, 2015, pp. 217-226. doi: 10.1016/j.conbuildmat.2015.08.013
63. Bilim, C., and Atiş, C. D., “Alkali Activation of Mortars Containing Different Replacement Levels of Ground Granulated Blast Furnace Slag,” Construction and Building Materials, V. 28, No. 1, 2012, pp. 708-712. doi: 10.1016/j.conbuildmat.2011.10.018
64. Behfarnia, K., and Rostami, M., “An Assessment on Parameters Affecting the Carbonation of Alkali-Activated Slag Concrete,” Journal of Cleaner Production, V. 157, 2017, pp. 1-9. doi: 10.1016/j.jclepro.2017.04.097
65. Song, K.-I.; Song, J.-K.; Lee, B. Y.; and Yang, K.-H., “Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar,” Advances in Materials Science and Engineering, V. 2014, 2014, Article ID 326458, 11 pp.
66. Shi, Z.; Shi, C.; Wan, S.; Li, N.; and Zhang, Z., “Effect of Alkali Dosage and Silicate Modulus on Carbonation of Alkali-Activated Slag Mortars,” Cement and Concrete Research, V. 113, 2018, pp. 55-64. doi: 10.1016/j.cemconres.2018.07.005
67. Puertas, F.; Palacios, M.; and Vázquez, T., “Carbonation Process of Alkali-Activated Slag Mortars,” Journal of Materials Science, V. 41, No. 10, 2006, pp. 3071-3082. doi: 10.1007/s10853-005-1821-2
68. Miyahara, S.; Owaki, E.; Ogino, M.; and Sakai, E., “Carbonation of a Concrete Using a Large Amount of Blast Furnace Slag Powder,” Journal of the Ceramic Society of Japan, V. 125, No. 6, 2017, pp. 533-538. doi: 10.2109/jcersj2.16269
69. Reeder, R. J., Carbonates: Mineralogy and Chemistry, Walter de Gruyter GmbH & Co. KG, Berlin, Germany, 2018, 399 pp.
70. Black, L.; Breen, C.; Yarwood, J.; Garbev, K.; Stemmermann, P.; and Gasharova, B., “Structural Features of C–S–H (I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases,” Journal of the American Ceramic Society, V. 90, No. 3, 2007, pp. 908-917. doi: 10.1111/j.1551-2916.2006.01429.x
71. Ye, H.; Cai, R.; and Tian, Z., “Natural Carbonation-Induced Phase and Molecular Evolution of Alkali-Activated Slag: Effect of Activator Composition and Curing Temperature,” Construction and Building Materials, V. 248, 2020, Article No. 118726. doi: 10.1016/j.conbuildmat.2020.118726
72. Ye, H., and Chen, Z., “Influence of Nitrate Corrosion Inhibitors on Phase Stability of Alkali-Activated Slag against Chloride Binding and Natural Carbonation,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 8, 2019, p. 04019160. doi: 10.1061/(ASCE)MT.1943-5533.0002830
73. Cadore, D. E.; Angulski da Luz, C.; and Farias de Medeiros, M. H., “An Investigation of the Carbonation of Alkaline Activated Cement Made from Blast Furnace Slag Generated by Charcoal,” Construction and Building Materials, V. 226, 2019, pp. 117-125. doi: 10.1016/j.conbuildmat.2019.07.209
74. Mei, K.; Gu, T.; Zheng, Y.; Zhang, L.; Zhao, F.; Gong, P.; Huang, S.; Zhang, C.; and Cheng, X., “Effectiveness and Microstructure Change of Alkali-Activated Materials during Accelerated Carbonation Curing,” Construction and Building Materials, V. 274, 2021, Article No. 122063. doi: 10.1016/j.conbuildmat.2020.122063
75. Nedeljković, M.; Zuo, Y.; Arbi, K.; and Ye, G., “Carbonation Resistance of Alkali-Activated Slag under Natural and Accelerated Conditions,” Journal of Sustainable Metallurgy, V. 4, No. 1, 2018, pp. 33-49. doi: 10.1007/s40831-018-0166-4
76. Liu, G.; Florea, M. V. A.; and Brouwers, H. J. H., “The Role of Recycled Waste Glass Incorporation on the Carbonation Behaviour of Sodium Carbonate Activated Slag Mortar,” Journal of Cleaner Production, V. 292, 2021, Article No. 126050. doi: 10.1016/j.jclepro.2021.126050