Title: 
            Performances of a Concrete Modified with Hydrothermal SiO2 Nanoparticles and Basalt Microfiber
        
        
            Author(s): 
            Vadim Potapov, Yuriy Efimenko, Roman Fediuk, and Denis Gorev
        
        
            
                Publication: 
                Materials Journal
            
            
                Volume: 
                119
            
            
                Issue: 
                5
            
            
                Appears on pages(s): 
                139-152
            
            
                Keywords: 
                basalt microfiber; calcium-silicate-hydrate (C-S-H)-gel nanostructure; compressive strength; durability; flexural strength; frost resistance; impact resistance; nanosilica; water impermeability.
            
            
                DOI: 
                10.14359/51735952
            
        
        
            Date: 
            9/1/2022
        
        
            Abstract:
            Cement concretes modified with hydrothermal nanosilica and basalt microfiber were developed. The compressive strength Fcom, flexural strength Fflex, and characteristics of impact viscosity were determined: the number of blows before the first fracture Nff and before ultimate failure Ncd, the coefficient Niv = Ncd/Nff, and the specific energy of impact destruction Eim/Sc. The strong effect of SiO2 action and synergistic effect of the combined action of nanoparticles and microfiber on Ncd and Eim/Sc was revealed. Statistical correlations with high R2 values were obtained between the characteristics of mechanical strength and impact viscosity at different doses of SiO2 nanoparticles. Correlations obtained can be used for reduction of the cross section of concrete structures and cement consumption. The mechanism of the strong synergistic effect of the combination is explained by the enlargement of the volume fraction of the high-density (HD) phase of calcium-silicate-hydrate (C-S-H) gel with more packed nanogranules and an increase in the shear stress of C-S-H gel relative to the lateral microfiber surfaces inside the HD-phase volume. The reduction of the coefficient of water filtration Kf and an increase in the frost resistance were achieved.
        
     
    
    
    
            Related References:
                
                        Abdolhosseini Qomi, M. J.; Krakowiak, K. J.; Bauchy, M.; Stewart, K. L.; Shahsavari, R.; Jagannathan, D.; Brommer, D. B.; Baronnet, A.; Buehler, M. J.; Yip, S.; Ulm, F.-J.; Van Vliet, K. J.; and Pellenq, R. J.-M., 2014, “Combinatorial Molecular Optimization of Cement Hydrates,” Nature Communications, V. 5, Article No. 4960, 10 pp. doi: 10.1038/ncomms5960
                    
                        Abhilash, P. P.; Nayak, D. K.; Sangoju, B.; Kumar, R.; and Kumar, V., 2021, “Effect of Nano-Silica in Concrete; A Review,” Construction and Building Materials, V. 278, Apr., Article No. 122347. doi: 10.1016/j.conbuildmat.2021.122347
                    
                        ACI Committee 544, 2002, “Report on Fiber Reinforced Concrete (ACI 544.1R-96) (Reapproved 2009),” American Concrete Institute, Farmington Hills, MI, 66 pp.
                    
                        Adetukasi, A. O.; Fadugba, O. G.; Adebakin, I. H.; and Omokungbe, O., 2021, “Strength Characteristics of Fibre-Reinforced Concrete Containing Nano-Silica,” Materials Today: Proceedings, V. 38, Part 2, pp. 584-589. doi: 10.1016/j.matpr.2020.03.123
                    
                        Constantinides, G., and Ulm, F.-J., 2007, “The Nanogranular Nature of C–S–H,” Journal of the Mechanics and Physics of Solids, V. 55, No. 1, Jan., pp. 64-90. doi: 10.1016/j.jmps.2006.06.003
                    
                        Fediuk, R.; Timokhin, R.; Mochalov, A.; Otsokov, K.; and Lashina, I., 2019, “Performance Properties of High-Density Impermeable Cementitious Paste,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 4, Apr., p. 04019013. doi: 10.1016/j.compositesb.2012.05.056
                    
                        GOST 10060-2012, 2012, “Concretes. Methods for the Determination of Frost-Resistance,” Federal Agency for Technical Regulation and Metrology, Moscow, Russia.
                    
                        GOST 10180-2012, 2012, “Concretes. Methods for Strength Determination Using Reference Specimens,” Federal Agency for Technical Regulation and Metrology, Moscow, Russia.
                    
                        Hou, P.; Kawashima, S.; Kong, D.; Corr, D. J.; Qian, J.; and Shah, S. P., 2013a, “Modification Effects of Colloidal NanoSiO2 on Cement Hydration and Its Gel Property,” Composites Part B: Engineering, V. 45, No. 1, Feb., pp. 440-448. doi: 10.1016/j.compositesb.2012.05.056
                    
                        Hou, P.; Wang, K.; Qian, J.; Kawashima, S.; Kong, D.; and Shah, S. P., 2012, “Effects of Colloidal NanoSiO2 on Fly Ash Hydration,” Cement and Concrete Composites, V. 34, No. 10, Nov., pp. 1095-1103. doi: 10.1016/j.cemconcomp.2012.06.012
                    
                        Hou, P.-K.; Kawashima, S.; Wang, K.-J.; Corr, D. J.; Qian, J.-S.; and Shah, S. P., 2013b, “Effects of Colloidal Nanosilica on Rheological and Mechanical Properties of Fly Ash–Cement Mortar,” Cement and Concrete Composites, V. 35, No. 1, Jan., pp. 12-22. doi: 10.1016/j.cemconcomp.2012.08.027
                    
                        Ismail, S., and Ramli, M., 2016, “Impact Resistance of Recycled Aggregate Concrete with Single and Hybrid Fibers,” MATEC Web of Conferences, V. 47, Article No. 02001.
                    
                        Jabir, H. A.; Abid, S. R.; Murali, G.; Ali, S. H.; Klyuev, S.; Fediuk, R.; Vatin, N.; Promakhov, V.; and Vasilev, Y., 2020, “Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC,” Fibers, V. 8, No. 12, Dec., Article No. 74.10.1016/j.cemconres.2018.07.003
                    
                        John, E.; Matschei, T.; and Stephan, D., 2018, “Nucleation Seeding with Calcium Silicate Hydrate – A Review,” Cement and Concrete Research, V. 113, Nov., pp. 74-85. doi: 10.1016/j.cemconres.2018.07.003
                    
                        Kawashima, S.; Hou, P.; Corr, D. J.; and Shah, S. P., 2013, “Modification of Cement-Based Materials with Nanoparticles,” Cement and Concrete Composites, V. 36, Feb., pp. 8-15. doi: 10.1016/j.cemconcomp.2012.06.01210.1016/j.cemconcomp.2012.06.012
                    
                        Li, Y.; Guo, X.; Yang, J.; and Li, M., 2019, “Preparation of Nano-SiO2/Carbon Fiber-Reinforced Concrete and Its Influence on the Performance Oil Well Cement,” International Journal of Polymer Science, V. 2019, Article No. 2783018, 9 pp. doi: 10.1155/2019/2783018
                    
                        Ling, Y.; Zhang, P.; Wang, J.; Taylor, P.; and Hu, S., 2020, “Effects of Nanoparticles on Engineering Performance of Cementitious Composites Reinforced with PVA Fibers,” Nanotechnology Reviews, V. 9, No. 1, Jan., pp. 504-514. doi: 10.1515/ntrev-2020-0038
                    
                        Marar, K.; Eren, Ö.; and Çelik, T., 2001, “Relationship between Impact Energy and Compression Toughness Energy of High-Strength Fiber-Reinforced Concrete,” Materials Letters, V. 47, No. 4-5, Feb., pp. 297-304. doi: 10.1016/S0167-577X(00)00253-6
                    
                        Mondal, P.; Shah, S. P.; Marks, L. D.; and Gaitero, J. J., 2010, “Comparative Study of the Effects of Microsilica and Nanosilica in Concrete,” Transportation Research Record: Journal of the Transportation Research Board, V. 2141, No. 1, pp. 6-9. doi: 10.3141/2141-02
                    
                        Potapov, V.; Efimenko, Y.; Fediuk, R.; Gorev, D.; Kozin, A.; and Liseitsev, Y., 2021, “Modification of Cement Composites with Hydrothermal Nano-SiO2,” Journal of Materials in Civil Engineering, ASCE, V. 33, No. 12, Dec., p. 04021339.
                    
                        Potapov, V.; Fediuk, R.; and Gorev, D., 2020a, “Hydrothermal SiO2 Nanopowders: Obtaining Them and Their Characteristics,” Nanomaterials (Basel), V. 10, No. 4, Apr., Article No. 624. doi: 10.3390/nano10040624
                    
                        Potapov, V.; Fediuk, R.; and Gorev, D., 2020b, “Obtaining Sols, Gels and Mesoporous Nanopowders of Hydrothermal Nanosilica,” Journal of Sol-Gel Science and Technology, V. 94, No. 3, June, pp. 681-694. doi: 10.1007/s10971-020-05216-z
                    
                        Potapov, V.; Fediuk, R.; and Gorev, D., 2020c, “Membrane Concentration of Hydrothermal SiO2 Nanoparticles,” Separation and Purification Technology, V. 251, Nov., Article No. 117290. doi: 10.1016/j.seppur.2020.117290
                    
                        Potapov, V. V., and Zhuravlev, L. T., 2005, “Temperature Dependence of the Concentration of Silanol Groups in Silica Precipitated from a Hydrothermal Solution,” Glass Physics and Chemistry, V. 31, No. 5, Sept., pp. 661-670. doi: 10.1007/s10720-005-0111-z
                    
                        Ramachandran, V. S.; Feldman, R. F.; and Beaudoin, J. J., 1981, Concrete Science: A Treatise on Current Research, Wiley Heyden Ltd., London, UK.
                    
                        Salemi, N., and Behfarnia, K., 2013, “Effect of Nano-Particles on Durability of Fiber-Reinforced Concrete Pavement,” Construction and Building Materials, V. 48, Nov., pp. 934-941. doi: 10.1016/j.conbuildmat.2013.07.037
                    
                        Sharma, U.; Ali, D.; and Singh, L. P., 2021, “Formation of C–S–H Nuclei Using Silica Nanoparticles during Early Age Hydration of Cementitious System,” European Journal of Environmental and Civil Engineering, V. 25, No. 8, pp. 1491-1502. doi: 10.1080/19648189.2019.1583135
                    
                        Singh, L. P.; Bhattacharyya, S. K.; Shah, S. P.; Mishra, G.; and Sharma, U., 2016, “Studies on Early Stage Hydration of Tricalcium Silicate Incorporating Silica Nanoparticles: Part II,” Construction and Building Materials, V. 102, Part 1, Jan., pp. 943-949. doi: 10.1016/j.conbuildmat.2015.05.084
                    
                        Singh, L. P.; Zhu, W.; Howind, T.; and Sharma, U., 2017, “Quantification and Characterization of C-S-H in Silica Nanoparticles Incorporated Cementitious System,” Cement and Concrete Composites, V. 79, May, pp. 106-116. doi: 10.1016/j.cemconcomp.2017.02.004
                    
                        Ulm, F.-J., 2012, “Nano-Engineering of Concrete,” Arabian Journal for Science and Engineering, V. 37, No. 2, Mar., pp. 481-488. doi: 10.1007/s13369-012-0181-x
                    
                        Zhang, P.; Dai, X.-B.; Gao, J.-X.; and Wang, P., 2015, “Effect of Nano-SiO2 Particles on Fracture Properties of Concrete Composite Containing Fly Ash,” Current Science, V. 108, No. 11, June, pp. 2035-2043.
                    
                        Zhang, P.; Guan, Q.-Y.; Liu, C.-H.; and Li, Q.-F., 2013, “Study on Notch Sensitivity of Fracture Properties of Concrete Containing Nano-SiO2 Particles and Fly Ash,” Journal of Nanomaterials, V. 2013, Article No. 381682, 7 pp.
                    
                        Zhang, P.; Wan, J.; Wang, K.; and Li, Q., 2017, “Influence of Nano-SiO2 on Properties of Fresh and Hardened High Performance Concrete: A State-of-the-Art Review,” Construction and Building Materials, V. 148, Sept., pp. 648-658. doi: 10.1016/j.conbuildmat.2017.05.059
                    
                        Zhang, P.; Zhao, Y.-N.; Li, Q.-F.; Wang, P.; and Zhang, T.-H., 2014a, “Flexural Toughness of Steel Fiber Reinforced High Performance Concrete Containing Nano-SiO2 and Fly Ash,” The Scientific World Journal, V. 2014, Article No. 403743, 11 pp.
                    
                        Zhang, P.; Zhao, Y.-N.; Li, Q.-F.; Zhang, T.-H.; and Wang, P., 2014b, “Mechanical Properties of Fly Ash Concrete Composite Reinforced with Nano-SiO2 and Steel Fibre,” Current Science, V. 106, No. 11, June, pp. 1529-1537.
                    
                        Zhdanok, S. A.; Potapov, V. V.; Polonina, E. N.; and Leonovich, S. N., 2020, “Modification of Cement Concrete by Admixtures Containing Nanosized Materials,” Journal of Engineering Physics and Thermophysics, V. 93, No. 3, May, pp. 648-652.