Title:
Preparatory Study about Effect of Feldspar on Properties of Alkali-Activated Slag Concrete
Author(s):
Alaa M. Rashad, Youssef A. Mosleh, and Mahmoud Gharieb
Publication:
Materials Journal
Volume:
120
Issue:
2
Appears on pages(s):
53-63
Keywords:
alkali-activated slag (AAS); compressive strength; feldspar; splitting strength; total porosity; water absorption
DOI:
10.14359/51737345
Date:
3/1/2023
Abstract:
In spite of feldspars being the most plentiful components in the
crust of the earth, their uses in alkali-activated materials are still too limited. In this work, for the first time, the effect of different ratios of potassium feldspar on the properties of alkali-activated slag (AAS) concrete was studied. The slag was partially replaced with 10 to 50% feldspar with a stride of 10 wt. %. The effects of feldspar on the workability, compressive strength, splitting tensile strength, water absorption, and total porosity of AAS concrete were investigated. Different techniques were applied to investigate the crystalline phases, hydration products, and microstructures of the critical samples. The results showed a positive effect of feldspar
on workability, of which the workability increased with increasing feldspar ratio. The incorporation of 10% feldspar has a positive effect on compressive strength, splitting tensile strength, water absorption, total porosity, and refining the microstructure, while higher ratios than 10% have a negative effect.
Related References:
1. Hilburg, J., “Concrete Production Produces Eight Percent of the World’s Carbon Dioxide Emissions,” The Architect’s Newspaper, Jan. 2, 2019, https://www.archpaper.com/2019/01/concrete-production-eight-percent-co2-emissions/. (last accessed Feb. 10, 2023)
2. Rodgers, L., “Climate Change: The Massive CO2 Emitter You May Not Know About,” BBC News, Dec. 17, 2018, https://www.bbc.com/news/science-environment-46455844. (last accessed Feb. 10, 2023)
3. Le Quéré, C.; Andrew, R. M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P. A.; Korsbakken, J. I.; Peters, G. P.; Canadell, J. G.; Arneth, A.; Arora, V. K.; Barbero, L.; Bastos, A.; Bopp, L.; Chevallier, F.; Chini, L. P.; Ciais, P.; Doney, S. C.; Gkritzalis, T.; Goll, D. S.; Harris, I.; Haverd, V.; Hoffman, F. M.; Hoppema, M.; Houghton, R. A.; Hurtt, G.; Ilyina, T.; Jain, A. K.; Johannessen, T.; Jones, C. D.; Kato, E.; Keeling, R. F.; Goldewijk, K. K.; Landschützer, P.; Lefèvre, N.; Lienert, S.; Liu, Z.; Lombardozzi, D.; Metzl, N.; Munro, D. R.; Nabel, J. E. M. S.; Nakaoka, S.; Neill, C.; Olsen, A.; Ono, T.; Patra, P.; Peregon, A.; Peters, W.; Peylin, P.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Resplandy, L.; Robertson, E.; Rocher, M.; Rödenbeck, C.; Schuster, U.; Schwinger, J.; Séférian, R.; Skjelvan, I.; Steinhoff, T.; Sutton, A.; Tans, P. P.; Tian, H.; Tilbrook, B.; Tubiello, F. N.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; Viovy, N.; Walker, A. P.; Wiltshire, A. J.; Wright, R.; Zaehle, S.; and Zheng, B., “Global Carbon Budget 2018,” Earth System Science Data, V. 10, No. 4, 2018, pp. 2141-2194. doi: 10.5194/essd-10-2141-2018
4. Abriyantoro, D.; Dong, J.; Hicks, C.; and Singh, S. P., “A Stochastic Optimisation Model for Biomass Outsourcing in the Cement Manufacturing Industry with Production Planning Constraints,” Energy, V. 169, 2019, pp. 515-526. doi: 10.1016/j.energy.2018.11.114
5. Rashad, A. M., “A Brief on High-Volume Class F Fly Ash as Cement Replacement–A Guide for Civil Engineer,” International Journal of Sustainable Built Environment, V. 4, No. 2, 2015, pp. 278-306. doi: 10.1016/j.ijsbe.2015.10.002
6. Rashad, A. M., “Metakaolin: Fresh Properties and Optimum Content for Mechanical Strength in Traditional Cementitious Materials–A Comprehensive Overview,” Reviews on Advanced Materials Science, V. 40, No. 1, 2015, pp. 15-44.
7. Rashad, A. M., “An Overview on Rheology, Mechanical Properties and Durability of High-Volume Slag Used as a Cement Replacement in Paste, Mortar and Concrete,” Construction and Building Materials, V. 187, 2018, pp. 89-117. doi: 10.1016/j.conbuildmat.2018.07.150
8. Rashad, A. M., “A Comprehensive Overview about the Influence of Different Additives on the Properties of Alkali-Activated Slag–A Guide for Civil Engineer,” Construction and Building Materials, V. 47, 2013, pp. 29-55. doi: 10.1016/j.conbuildmat.2013.04.011
9. Shi, C.; Roy, D.; and Krivenko, P., Alkali-Activated Cements and Concretes, CRC Press, Boca Raton, FL, 2003.
10. Rashad, A. M., “Effect of Quartz-Powder on the Properties of Conventional Cementitious Materials and Geopolymers,” Materials Science and Technology, V. 34, No. 17, 2018, pp. 2043-2056. doi: 10.1080/02670836.2018.1471435
11. Amran, Y. H. M.; Alyousef, R.; Alabduljabbar, H.; and El-Zeadani, M., “Clean Production and Properties of Geopolymer Concrete; A Review,” Journal of Cleaner Production, V. 251, 2020, Article No. 119679. doi: 10.1016/j.jclepro.2019.119679
12. Loring, J. S.; Miller, Q. R.; Thompson, C. J.; and Schaef, H. T., “Experimental Studies of Reactivity and Transformations of Rocks and Minerals in Water-Bearing Supercritical CO2,” Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales, P. Newell and A. G. Ilgen, eds., Elsevier, Amsterdam, the Netherlands, 2019, pp. 63-88.
13. Locati, F.; Marfil, S.; Baldo, E.; and Maiza, P., “Na2O, K2O, SiO2 and Al2O3 Release from Potassic and Calcic–Sodic Feldspars into Alkaline Solutions,” Cement and Concrete Research, V. 40, No. 8, 2010, pp. 1189-1196. doi: 10.1016/j.cemconres.2010.04.005
14. Yao, G.; Wang, Z.; Yao, J.; Cong, X.; Anning, C.; and Lyu, X., “Pozzolanic Activity and Hydration Properties of Feldspar after Mechanical Activation,” Powder Technology, V. 383, 2021, pp. 167-174. doi: 10.1016/j.powtec.2021.01.042
15. Khoshkbijari, R. K.; Samimi, M. F.; Mohammadi, F.; and Talebitaher, P., “Effects of Mica and Feldspar as Partial Cement Replacement on the Rheological, Mechanical and Thermal Durability of Self-Compacting Mortars,” Construction and Building Materials, V. 263, 2020, Article No. 120149. doi: 10.1016/j.conbuildmat.2020.120149
16. Enríquez, E.; Torres-Carrasco, M.; Cabrera, M. J.; Muñoz, D.; and Fernández, J. F., “Towards More Sustainable Building Based on Modified Portland Cements through Partial Substitution by Engineered Feldspars,” Construction and Building Materials, V. 269, 2021, Article No. 121334. doi: 10.1016/j.conbuildmat.2020.121334
17. Constantiner, D., and Diamond, S., “Alkali Release from Feldspars into Pore Solutions,” Cement and Concrete Research, V. 33, No. 4, 2003, pp. 549-554. doi: 10.1016/S0008-8846(02)01001-3
18. Xu, H., and van Deventer, J. S. J., “Factors Affecting the Geopolymerization of Alkali-Feldspars,” Mining, Metallurgy & Exploration, V. 19, No. 4, 2002, pp. 209-214. doi: 10.1007/BF03403271
19. Tian, L.; Feng, W.; Ma, H.; Zhang, S.; and Shi, H., “Investigation on the Microstructure and Mechanism of Geopolymer with Different Proportion of Quartz and K-Feldspar,” Construction and Building Materials, V. 147, 2017, pp. 543-549. doi: 10.1016/j.conbuildmat.2017.04.102
20. González-García, D. M.; Téllez-Jurado, L.; Jiménez-Álvarez, F. J.; and Balmori-Ramírez, H., “Structural Study of Geopolymers Obtained from Alkali-Activated Natural Pozzolan Feldspars,” Ceramics International, V. 43, No. 2, 2017, pp. 2606-2613. doi: 10.1016/j.ceramint.2016.11.070
21. Abdel-Gawwad, H. A., and Khalil, K. A., “Application of Thermal Treatment on Cement Kiln Dust and Feldspar to Create One-Part Geopolymer Cement,” Construction and Building Materials, V. 187, 2018, pp. 231-237. doi: 10.1016/j.conbuildmat.2018.07.161
22. Rashad, A. M.; Morsi, W. M.; and Khafaga, S. A., “Effect of Limestone Powder on Mechanical Strength, Durability and Drying Shrinkage of Alkali-Activated Slag Pastes,” Innovative Infrastructure Solutions, V. 6, No. 2, 2021, Article No. 127. doi: 10.1007/s41062-021-00496-y
23. ASTM C494/C494M-19, “Standard Specification for Chemical Admixtures for Concrete,” ASTM International, West Conshohocken, PA, 2019, 15 pp.
24. ES 1109/2021, “Aggregate for Concrete,” Egyptian Organization for Standards & Quality, Cairo, Egypt, 2021, 52 pp.
25. ASTM C128-15, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate,” ASTM International, West Conshohocken, PA, 2015, 6 pp.
26. ASTM C136/C136M-14, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” ASTM International, West Conshohocken, PA, 2014, 5 pp.
27. ASTM C143/C143M-12, “Standard Test Method for Slump of Hydraulic-Cement Concrete,” ASTM International, West Conshohocken, PA, 2012, 4 pp.
28. BS EN 12390-3:2019, “Testing Hardened Concrete - Part 3: Compressive Strength of Test Specimens,” British Standards Institution, London, UK, 2019.
29. BS EN 12390-6:2009, “Testing Hardened Concrete - Part 6: Tensile Splitting Strength of Test Specimens,” British Standards Institution, London, UK, 2009.
30. ASTM C642-21, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” ASTM International, West Conshohocken, PA, 2021, 3 pp.
31. Rashad, A. M., and Essa, G. M. F., “Effect of Ceramic Waste Powder on Alkali-Activated Slag Pastes Cured in Hot Weather after Exposure to Elevated Temperature,” Cement and Concrete Composites, V. 111, 2020, Article No. 103617. doi: 10.1016/j.cemconcomp.2020.103617
32. Yaseri, S.; Hajiaghaei, G.; Mohammadi, F.; Mahdikhani, M.; and Farokhzad, R., “The Role of Synthesis Parameters on the Workability, Setting and Strength Properties of Binary Binder Based Geopolymer Paste,” Construction and Building Materials, V. 157, 2017, pp. 534-545. doi: 10.1016/j.conbuildmat.2017.09.102
33. Khalil, M. G.; Elgabbas, F.; El-Feky, M. S.; and El-Shafie, H., “Performance of Geopolymer Mortar Cured under Ambient Temperature,” Construction and Building Materials, V. 242, 2020, Article No. 118090. doi: 10.1016/j.conbuildmat.2020.118090
34. Rashad, A. M., and Sadek, D. M., “An Exploratory Study on Alkali-Activated Slag Blended with Microsize Metakaolin Particles Under the Effect of Seawater Attack and Tidal Zone,” Arabian Journal for Science and Engineering, V. 47, No. 4, 2022, pp. 4499-4510. doi: 10.1007/s13369-021-06151-z
35. Puertas, F.; Varga, C.; and Alonso, M. M., “Rheology of Alkali-Activated Slag Pastes. Effect of the Nature and Concentration of the Activating Solution,” Cement and Concrete Composites, V. 53, 2014, pp. 279-288. doi: 10.1016/j.cemconcomp.2014.07.012
36. Ramezanianpour A. A., and Moeini M. A., “Mechanical and Durability Properties of Alkali Activated Slag Coating Mortars Containing Nanosilica and Silica Fume,” Construction and Building Materials, V. 163, 2018, pp. 611-621. doi: 10.1016/j.conbuildmat.2017.12.062
37. He, P.; Wang, M.; Fu, S.; Jia, D.; Yan, S.; Yuan, J.; Xu, J.; Wang, P.; and Zhou, Y., “Effects of Si/Al Ratio on the Structure and Properties of Metakaolin Based Geopolymer,” Ceramics International, V. 42, No. 13, 2016, pp. 14416-14422. doi: 10.1016/j.ceramint.2016.06.033
38. Riahi, S.; Nemati, A.; Khodabandeh, A.; and Baghshahi, S., “The Effect of Mixing Molar Ratios and Sand Particles on Microstructure and Mechanical Properties of Metakaolin-Based Geopolymers,” Materials Chemistry and Physics, V. 240, 2020, Article No. 122223. doi: 10.1016/j.matchemphys.2019.122223
39. Wang, H.; Li, H.; and Yan, F., “Synthesis and Mechanical Properties of Metakaolinite-Based Geopolymer,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 268, No. 1-3, 2005, pp. 1-6. doi: 10.1016/j.colsurfa.2005.01.016
40. De Silva, P.; Sagoe-Crenstil, K.; and Sirivivatnanon, V., “Kinetics of Geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, V. 37, No. 4, 2007, pp. 512-518. doi: 10.1016/j.cemconres.2007.01.003
41. Lahoti, M.; Narang, P.; Tan, K. H.; and Yang, E.-H., “Mix Design Factors and Strength Prediction of Metakaolin-Based Geopolymer,” Ceramics International, V. 43, No. 14, 2017, pp. 11433-11441. doi: 10.1016/j.ceramint.2017.06.006
42. Pouhet, R.; Cyr, M.; and Bucher, R., “Influence of the Initial Water Content in Flash Calcined Metakaolin-Based Geopolymer,” Construction and Building Materials, V. 201, 2019, pp. 421-429. doi: 10.1016/j.conbuildmat.2018.12.201
43. Cheah, C. B.; Tan, L. E.; and Ramli, M., “The Engineering Properties and Microstructure of Sodium Carbonate Activated Fly Ash/Slag Blended Mortars with Silica Fume,” Composites Part B: Engineering, V. 160, 2019, pp. 558-572. doi: 10.1016/j.compositesb.2018.12.056
44. Liu, Y.; Shi, C.; Zhang, Z.; Li, N.; and Shi, D., “Mechanical and Fracture Properties of Ultra-High Performance Geopolymer Concrete: Effects of Steel Fiber and Silica Fume,” Cement and Concrete Composites, V. 112, 2020, Article No. 103665. doi: 10.1016/j.cemconcomp.2020.103665
45. Rashad, A. M., and Khalil, M. H., “A Preliminary Study of Alkali-Activated Slag Blended with Silica Fume under the Effect of Thermal Loads and Thermal Shock Cycles,” Construction and Building Materials, V. 40, 2013, pp. 522-532. doi: 10.1016/j.conbuildmat.2012.10.014
46. Wetzel, A., and Middendorf, B., “Influence of Silica Fume on Properties of Fresh and Hardened Ultra-High Performance Concrete Based on Alkali-Activated Slag,” Cement and Concrete Composites, V. 100, 2019, pp. 53-59. doi: 10.1016/j.cemconcomp.2019.03.023
47. Hammad, N.; El-Nemr, A.; and Hasan, H. E.-D., “The Performance of Fiber GGBS Based Alkali-Activated Concrete,” Journal of Building Engineering, V. 42, 2021, Article No. 102464. doi: 10.1016/j.jobe.2021.102464
48. Mithun, B. M., and Narasimhan, M. C., “Performance of Alkali Activated Slag Concrete Mixes Incorporating Copper Slag as Fine Aggregate,” Journal of Cleaner Production, V. 112, Part 1, 2016, pp. 837-844. doi: 10.1016/j.jclepro.2015.06.026
49. Mengasini, L.; Mavroulidou, M.; and Gunn, M. J., “Alkali-Activated Concrete Mixes with Ground Granulated Blast Furnace Slag and Paper Sludge Ash in Seawater Environments,” Sustainable Chemistry and Pharmacy, V. 20, 2021, Article No. 100380. doi: 10.1016/j.scp.2021.100380
50. Huang, J.; Zou, C.; Sun, D.; Yang, B.; and Yan, J., “Effect of Recycled Fine Aggregates on Alkali-Activated Slag Concrete Properties,” Structures, V. 30, 2021, pp. 89-99. doi: 10.1016/j.istruc.2020.12.064
51. Rostami, M., and Behfarnia, K., “The Effect of Silica Fume on Durability of Alkali Activated Slag Concrete,” Construction and Building Materials, V. 134, 2017, pp. 262-268. doi: 10.1016/j.conbuildmat.2016.12.072
52. Behfarnia, K., and Rostami, M., “Mechanical Properties and Durability of Fiber Reinforced Alkali Activated Slag Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 12, 2017, p. 04017231. doi: 10.1061/(ASCE)MT.1943-5533.0002073
53. Bai, Y.-H.; Yu, S.; and Chen, W., “Experimental Study of Carbonation Resistance of Alkali-Activated Slag Concrete,” ACI Materials Journal, V. 116, No. 3, May 2019, pp. 95-104. doi: 10.14359/51715585
54. Nanayakkara, O.; Gunasekara, C.; Sandanayake, M.; Law, D. W.; Nguyen, K.; Xia, J.; and Setunge, S., “Alkali Activated Slag Concrete Incorporating Recycled Aggregate Concrete: Long Term Performance and Sustainability Aspect,” Construction and Building Materials, V. 271, 2021, Article No. 121512. doi: 10.1016/j.conbuildmat.2020.121512
55. Bayiha, B. N.; Billong, N.; Yamb, E.; Kaze, R. C.; and Nzengwa, R., “Effect of Limestone Dosages on Some Properties of Geopolymer from Thermally Activated Halloysite,” Construction and Building Materials, V. 217, 2019, pp. 28-35. doi: 10.1016/j.conbuildmat.2019.05.058
56. Kim, T., and Kang, C., “The Mechanical Properties of Alkali-Activated Slag-Silica Fume Cement Pastes by Mixing Method,” International Journal of Concrete Structures and Materials, V. 14, No. 1, 2020, Article No. 41. doi: 10.1186/s40069-020-00416-x
57. Shariati, M.; Shariati, A.; Trung, N. T.; Shoaei, P.; Ameri, F.; Bahrami, N.; and Zamanabadi, S. N., “Alkali-Activated Slag (AAS) Paste: Correlation between Durability and Microstructural Characteristics,” Construction and Building Materials, V. 267, 2021, Article No. 120886. doi: 10.1016/j.conbuildmat.2020.120886