International Concrete Abstracts Portal

  


Title: A Comparative Analysis of GFRP- and Steel-RC Columns under Combined Shear, Flexure, and Torsion Loads

Author(s): Yasser M. Selmy and Ehab F. El-Salakawy

Publication: Symposium Paper

Volume: 360

Issue:

Appears on pages(s): 442-461

Keywords: Circular columns, GFRP reinforcement, ductility, deformability, torsion-to-bending moment, seismic behavior, combined cyclic loading.

DOI: 10.14359/51740642

Date: 3/1/2024

Abstract:
The seismic performance of reinforced concrete (RC) bridge columns subjected to multidirectional ground motions is a critical issue, as these columns can experience axial compression, bending, and torsional loading. Moreover, steel corrosion is a significant concern in existing bridges, leading to deficiencies in steel-RC structural members. The use of glass fiber-reinforced polymer (GFRP) reinforcement has been established as a practical and effective solution to mitigate the corrosion-related issues associated with traditional steel reinforcement in concrete structures. However, the dissimilar mechanical properties of GFRP and steel have raised apprehensions regarding its feasibility in seismic-resistant structures. The current study involves conducting an experimental investigation to assess the feasibility of utilizing GFRP reinforcement as a substitute for conventional steel reinforcement in circular RC bridge columns subjected to cyclic lateral loading, which induces shear, bending, and torsion. One column was reinforced with GFRP bars and stirrups, while the other column, served as a control and was reinforced with conventional steel reinforcement. The aim of this investigation was to analyze the lateral displacement deformability and energy dissipation characteristics of the GFRP-RC column. The results showed that GFRP-RC column exhibited stable post-peak behavior and high levels of deformability under the applied combined loading. Additionally, with a torsion-to-bending moment ratio of 0.2, both columns reached similar lateral load and torsional moment capacities and were able to attain lateral-drift capacities exceeding the minimum requirements of North American design codes and guidelines.




  


ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.