ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Frost Durability and Service Life Prediction of Self-Healing Concrete

Author(s): Jialuo He, Ayumi Manawadu, Yong Deng, Jie Zhao, and Xianming Shi

Publication: Materials Journal

Volume: 121

Issue: 5

Appears on pages(s): 23-38

Keywords: freezing and thawing (F/T); microcapsule; probabilistic damage model; self-healing concrete; service life prediction; three-parameter Weibull distribution

DOI: 10.14359/51742036

Date: 9/1/2024

Abstract:
This laboratory study employed synthesized urea-formaldehyde (UF) microcapsules and polyvinyl alcohol (PVA) microfibers as a self-healing system to improve the durability of concrete in cold climates. The resistance of concrete specimens to rapid freezingand- thawing (F/T) cycles was evaluated by measuring the change of relative dynamic modulus of elasticity (RDM) with respect to the number of F/T cycles. The control specimens (either with or without PVA microfibers) approached the failure state with a reduction of 38% in RDM after being subjected to 54 F/T cycles, whereas the self-healing specimens (either with or without PVA microfibers) remained in a good state with a reduction of approximately 10 to 15% in RDM after 732 F/T cycles. A polynomial regression model was developed to establish the relationship between the RDM and number of F/T cycles, and a three-parameter Weibull distribution model was employed to conduct the probabilistic damage analysis and characterize the relationship between the number of F/T cycles (N) and the damage level (D) with various reliabilities. The results revealed that the benefits of UF microcapsules and PVA microfibers to the frost durability of concrete diminish once the damage level exceeds a certain high level. Based on the Weibull distribution model, the relationships were established and validated between N and D by comparing the experimental data, the predicted data based on the nonlinear polynomial regression model, and the predicted data based on N-D relationships. The field service life of the self-healing concrete was then predictable at any given reliability.


ALSO AVAILABLE IN:

Electronic Materials Journal