ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Blast Performance of Ultra-High-Performance Concrete with Foamed Concrete and Polyurea Coatings

Author(s): Kusum Saini and Vasant A. Matsagar

Publication: Symposium Paper

Volume: 363

Issue:

Appears on pages(s): 118-136

Keywords: blast, concrete damage plasticity, foamed concrete, polyurea, ultra-high-performance concrete

DOI: 10.14359/51742110

Date: 7/1/2024

Abstract:
Lightweight and high-performance materials have become necessary for infrastructure with advanced construction and performance requirements. One of the major challenges with structures made of these materials is their performance under natural and man-made hazards, such as wind, fire, and blast. Therefore, in this study, the performance of ultra-high-performance concrete (UHPC) and UHPC coated with foamed concrete (UHPC-Foamed) and polyurea (UHPC-Polyurea) is investigated under blast load. A finite element model is developed to assess the behavior of UHPC and coated UHPC panels under far-field and near-field blast scenarios. The constitutive behaviors of UHPC and foamed concrete are considered using the concrete damage plasticity model with respective parameters. The polyurea is modeled as a hyperelastic material with the Mooney-Rivlin model. Moreover, the effectiveness of the additional coatings, i.e., foamed concrete and polyurea, on the blast resistance of each panel is presented. The finding of the study shows that both foamed concrete and polyurea enhance the blast resistance of the UHPC concrete panels. Moreover, a comparison between the blast resistance of UHPC-Foamed and UHPC-Polyurea is conducted under far-field and near-field blast scenarios. Also, the effectiveness of foamed concrete and polyurea coatings with different thicknesses to UHPC panels is assessed under both blast scenarios.