Title:
Mechanical Properties and Microstructure of Carbon Fiber-Reinforced Nano Metakaolin Recycled Concrete (Pre-Published)
Author(s):
Jie Yan, Yan Luo, Longhui Feng, Haoran Zhang, Weisu Weng, Bo Yang, Jingru Li, Yongcheng Zhuang, Junpeng Zuo, Chongyang Liang, Xiaoyu Wang, Jun Xie
Publication:
Materials Journal
Volume:
Issue:
Appears on pages(s):
Keywords:
carbon fiber; interfacial transition zone; mechanical properties; microstructure; nano metakaolin; orthogonal test; recycled aggregate concrete
DOI:
10.14359/51743286
Date:
10/2/2024
Abstract:
To make full use of recycled aggregate concrete (RAC), carbon fiber (CF) and nano metakaolin (NMK) were mixed into RAC to improve their mechanical properties and microstructure. The effects of NMK content, CF content, recycled aggregate (RA) replacement rate, and CF length on the compressive strength, split tensile strength, and tension-compression ratio of RAC were studied by the orthogonal test method, then the test results were analyzed. The results show that the NMK content and RA replacement rate have significant effects on the compressive strength of RAC, while the CF content has significant effects on the split tensile strength and the tension-compression ratio. Through the synergistic effect of NMK and CF, the pore structure characteristics of RAC are improved, and the bonding strength of the interfacial transition zone (ITZ) of CF-mortar is increased, which further enhances the strengthening effect of CF, thus the mechanical properties of RAC are continuously enhanced.