ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 30524 Abstracts search results

Document: 

22-164

Date: 

April 1, 2024

Author(s):

Avinaya Tripathi, Sooraj A. O. Nair, Harshitsinh Chauhan, and Narayanan Neithalath

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Conventional approaches to concrete three-dimensional (3-D) printing relies on printing concrete in a straight (linear) print path, with layers overlaid on top of each other. This results in interlayer and interfilament joints being potential weak spots that compromise the mechanical performance. This paper evaluates simple alterations to the print geometry to mitigate some of these effects. A printable mixture with 30% of limestone powder replacing cement (by mass), with a 28-day compressive strength of approximately 70 MPa in the strongest direction is used. S- and 3-shaped print paths are evaluated as alternatives to the linear print path. Staggering of the layers ensures that the interfilament joints do not lie on the same plane along the depth. Flexural strength enhancement is observed when print geometries are changed and/or layers are staggered. The study shows that print geometry modifications mitigate mechanical property reductions attributed to interfilament defects in 3-D concrete printing.

DOI:

10.14359/51740262


Document: 

22-288

Date: 

April 1, 2024

Author(s):

Christian Negron-McFarlane, Eric Kreiger, Lynette Barna, Peter Stynoski, and Megan Kreiger

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

An experimental investigation was carried out using the volumetric proportioning approach to achieve printable portland cement concrete mixtures. The types of aggregates investigated were rounded pea gravel and coarse and fine sand. The test matrix of potential concrete mixtures was prepared based on watercement ratios (w/c) of 0.46 to 0.48, sand-to-stone ratios (sa/st) of 1.18 to 1.91, and paste-aggregate ratios (p/a) of 0.74 to 0.81. The workability and early-age strength of fresh concrete were characterized by field-friendly flow-table and unconfined compressive strength (UCS) tests. Test results indicated that the w/c, sa/st, and p/a all significantly affect fresh concrete pumpability and early-age strength. The overall research results revealed that pumpability and buildability can be evaluated with these two tests. The results of these two tests together are used to define a printable region.

DOI:

10.14359/51740265


Document: 

22-217

Date: 

April 1, 2024

Author(s):

Amin K. Akhnoukh and Mathew Campbell

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

The U.S. National Ocean Service estimates 95,741 miles (154,080 km) of shoreline in the United States, where 163 miles per year are hardened by bulkheads and riprap. These shoreline protection techniques are costly and require frequent maintenance. Different agencies are examining “nature-based” solutions that combine vegetation with traditional concrete. Digital construction, advanced manufacturing, and innovative cementitious composites have also been proposed as potential means to lower material use, cost, and environmental impact. This paper presents a novel advanced manufacturing technique using a reactive-diffusion morphological process, called “dry-forming,” to three-dimensionally (3-D) printed concrete structures of various shapes, sizes, and complexities with standard concrete mixtures. This technology has reduced 60% of material use, enhanced local habitats, and increased the resiliency of the shoreline to sea level rise. The widespread use of this technology would increase the resiliency of coastal communities, protect aquatic life, and protect waterfront public and private real estate investments.

DOI:

10.14359/51740264


Document: 

22-424

Date: 

April 1, 2024

Author(s):

C. Pleesudjai, D. Patel, K. A. Williams Gaona, M. Bakhshi, V. Nasri, and B. Mobasher

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Statistical process control (SPC) procedures are proposed to improve the production efficiency of precast concrete tunnel segments. Quality control test results of more than 1000 ASTM C1609/C1609M beam specimens were analyzed. These specimens were collected over 18 months from the fiber-reinforced concrete (FRC) used for the production of precast tunnel segments of a major wastewater tunnel project in the Northeast United States. The Anderson-Darling (AD) test for the overall distribution indicated that the data are best described by a normal distribution. The initial residual strength parameter for the FRC mixture, f D 600, is the most representative parameter of the post-crack region. The lower 95% confidence interval (CI) values for 28-day flexural strength parameters of f1, f D 600, and f D 300 exceeded the design strengths and hence validated the strength acceptability criteria set at 3.7 MPa (540 psi). A combination of run chart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) control charts successfully identified the out-of-control mean values of flexural strengths. These methods identify the periods corresponding to incapable manufacturing processes that should be investigated to move the processes back into control. This approach successfully identified the capable or incapable processes. The study also included the Bootstrap Method to analyze standard error in the test data and its reliability to determine the sample size.

DOI:

10.14359/51740373


Document: 

22-409

Date: 

April 1, 2024

Author(s):

Ronan Chometon, Maxime Liard, Pascal Hebraud, and Didier Lootens

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

The need to constantly improve the quality and properties of manufactured products leads to the development of hybrid materials that combine different elements, complementing one another. Fiber-reinforced mortar is one of those products, as the fibers are used to improve cementitious materials’ flexural weakness. Experimental data on different metallic fibers dispersed in mortar demonstrate the correlation between early-age rheological properties and long-term mechanical strength. Both quantities depend on the ratio of the solid volume fraction of the fiber to a critical solid volume fraction characteristic of the form factors of the fiber. It is demonstrated that both effects arise from the packing stress of the fibers in the mortar when their concentrations are close to their maximum packing fraction. Geometrical arguments are used to explain how this critical volume fraction is related to the fiber form factor. Then, it enables the building of master curves using geometrical arguments.

DOI:

10.14359/51740371


12345...>>

Results Per Page