ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 25 Abstracts search results
Document:
23-236
Date:
August 1, 2024
Author(s):
Tiago Canavarro Cavalcante, Romildo Dias Toledo Filho, and Oscar Aurelio Mendoza Reales
Publication:
Materials Journal
Volume:
121
Issue:
4
Abstract:
A high cement content is often found in concrete mixture designs to achieve the unique fresh-state behavior requirements of three dimensional (3-D) printable concrete (3DPC) to ensure rapid stiffening of an extruded layer without collapsing under the stress applied by the following layers. Some materials with high water absorption, such as recycled concrete aggregates, have been incorporated in concrete mixture designs to minimize environmental impact; nevertheless, the fine powder fraction that remains from the recycled aggregate processing still poses a challenge. In the case of 3DCP, few studies are available regarding mixture designs using recycled concrete powder (RCP) for 3-D printing. In this context, this study presents the use of RCP as a filler to produce a printable mixture with low cement content. An RCP with 50 μm average particle size was obtained as a by-product from recycled concrete aggregate production. Portland cement pastes were produced with 0, 10, 20, 30, 40, and 50% of cement mass replacement by RCP to evaluate its effects on the hydration reaction, rheology, and compressive strength. It was found that the studied RCP replacement was not detrimental for the hydration reaction of portland cement during the initial hours, and at the same time, it was capable of modifying the rheological parameters of the paste proportionally to the packing density of its solid fraction. The obtained results indicated the viability of 3DCP with up to 50% cement replacement by RCP. It was concluded that RCP presents good potential for decreasing the cement consumption of 3DPC, which in turn could decrease its associated environmental impact while providing a destination for a by-product from recycled concrete aggregate production.
DOI:
10.14359/51740778
22-193
April 1, 2024
Yu Wang, Fabian B. Rodriguez, Jan Olek, Pablo D. Zavattieri, and Jeffrey P. Youngblood
2
Reinforcing strategies for three-dimensional printing (3DP) of cementitious materials (mostly mortars) have been extensively studied in recent years. Among various reinforcement strategies available for 3DP of cementitious materials, the use of fibers is frequently mentioned as a promising approach to enhance their mechanical performance. This work aims to evaluate the influence of four types of fibers (polyvinyl alcohol [PVA], nylon, rayon, and basalt) on the flowability and flexural strength of mortars used in 3DP. The flexural behavior of 3DP beams was compared with that of cast specimens, and the digital image correlation (DIC) technique was used to evaluate the development of the cracks. The fiber orientation in the reference (cast) and 3DP samples was examined using optical microscopy. The results revealed that, among four types of fibers used, the PVA fibers were most effective in increasing the flexural strength of both the cast and 3DP specimens. In addition, the results show that all fibers preferentially aligned parallel to the printing direction. 3DP specimens with filaments aligned in the direction perpendicular to the direction of the applied load showed superior flexural strength when compared to the cast specimens.
10.14359/51740263
22-159
March 1, 2024
Shin Hau Bong, Behzad Nematollahi, Viktor Mechtcherine, Victor C. Li, and Kamal H. Khayat
Structural Journal
Extrusion-based concrete printing technology allows the fabrication of permanent formwork with intricate shapes, into which fresh concrete is cast to build structural members with complex geometries. This significantly enhances the geometric freedom of concrete structures without the use of expensive temporary formwork. In addition, with proper material choice for the permanent formwork, the load-bearing capacity and durability of the resulting structure can be improved. This paper investigates the concrete printing of permanent formwork for reinforced concrete (RC) beam construction. A three-dimensional (3-D)-printable engineered geopolymer composite or strain-hardening geopolymer composite (3DP-EGC or 3DP-SHGC), recently developed by the authors, was used to fabricate the permanent formwork. The 3DP-EGC exhibits strainhardening behavior under direct tension. Two different printing patterns were used for the soffit of the permanent formwork to investigate the effect of this parameter on the flexural performance of RC beams. A conventionally mold-cast RC beam was also prepared as the control beam for comparison purposes. The results showed that the RC beams constructed using the 3DP-EGC permanent formwork exhibited superior flexural performance to the control beam. Such beams yielded significantly higher cracking load (up to 43%), deflection at ultimate load (up to 60%), ductility index (50%), and absorbed energy (up to 107%) than those of the control beam. The ultimate load was comparable with or slightly higher than that of the control beam. Furthermore, the printing pattern at the soffit of the permanent formwork was found to significantly influence the flexural performance of the RC beams.
10.14359/51739159
22-179
Egor Ivaniuk and Viktor Mechtcherine
Despite all the recent advances in the development of threedimensional (3-D) concrete printing (3DCP), this technology still has many unresolved problems. In most of the completed projects with the application of 3DCP, the focus was mainly on mastering the printing of vertical walls, while horizontal structural elements were produced with conventional methods—that is, using formwork, which reduces the level of technology automation, or using prefabricated elements, which makes the construction dependent on their availability and supply. In this contribution, the authors propose new methods of manufacturing slabs and beams directly on site by extruding concrete onto a textile reinforcement mesh laid on a flat surface. Specimens obtained from a slab produced following this method were used for mechanical testing and investigation of the concrete-reinforcement interface zone. Finally, as proof of the feasibility of the proposed approach, a demonstrator representing a full-scale door lintel was manufactured.
10.14359/51739158
20-346
November 1, 2021
J. Kruger, S. Cho, M. van den Heever, F. Bester, A. van Rooyen, and G. van Zijl
118
6
This paper investigates the application of nanotechnology in three-dimensional (3D) concrete printing (3DCP), in particular for enhancing thixotropic material behavior, improving buildability or the vertical building rate, and the amelioration of typical 3DCP anisotropic mechanical properties. Two 3D-printable cementitious materials are investigated in this study: 1) high-performance concrete (HPC) with respective nano-silica (nS) and silicon carbide (SiC) nanoparticle additions; and 2) lightweight foamed concrete (LWFC) with nS addition. The results indicate a significant increase in thixotropic material behavior for the HPC at low nanoparticle dosages. The inclusion of SiC nanoparticles improved the HPC’s buildability performance by 45%. The incorporation of 3% nS to the LWFC increased the static yield shear stress by up to five times, which is validated by the improved buildability performance. Hardened state mechanical properties improved for both cementitious materials and nanoparticle additions. Especially noteworthy is nanoparticles’ favorable influence on the interlayer bond strength.
10.14359/51733101
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.