ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 32 Abstracts search results
Document:
21-220
Date:
August 1, 2024
Author(s):
Brian Giltner, Seamus Freyne, and Anthony J. Lamanna
Publication:
Materials Journal
Volume:
121
Issue:
4
Abstract:
The focus of this study is to determine the optimum length of micro (average diameter less than 0.3 mm) and macro (average diameter greater than or equal to 0.3 mm) hemp fibers subjected to tensile loading in a cement paste mixture. Optimizing the length of the fibers to carry tensile loading for concrete members is important to minimize waste of hemp material and to provide the best performance. This study evaluated three water-cement ratios (w/c): 0.66, 0.49, and 0.42 (fc′ = 17.2, 24.1, and 27.6 MPa [2500, 3500, and 4000 psi], respectively). Because of the high cost of cement, replacement of cement with fly ash was also part of the program to determine if the addition of fly ash would have a negative impact on the performance of the hemp fibers. The results show that hemp micro- and macrofibers bonded to the cement matrix and carry higher tensile loads at higher w/c. Statistical analysis (regression modeling) shows that the optimum length for hemp macrofibers is 30 and 20 mm (1.18 and 0.79 in.) for microfibers.
DOI:
10.14359/51740822
21-350
July 1, 2022
Hyeon-Jong Hwang, Soo-Hyun Kim, Sung-Hyun Kim, Mok-In Park, and Hong-Gun Park
Structural Journal
119
Under earthquake load, as the inelastic deformation increases, the shear strength of reinforced concrete coupling beams is degraded by diagonal cracking. In the present study, for the performance-based design of short coupling beams (l/h ≤ 2.5), a shear strength degradation model based on diagonal strut and truss mechanisms was developed, addressing the effects of the target chord rotation, longitudinal reinforcing bar ratio, length-to-height ratio, ratio and details of transverse reinforcement, distributed longitudinal web bars, and diagonal bars. Based on the proposed method, a simplified moment-rotation relationship of plastic hinges was developed for the nonlinear numerical analysis of coupling beams. For verification, the proposed method was applied to existing coupling beam specimens with a conventional reinforcing bar layout, distributed longitudinal web bars, and/or diagonal reinforcement. The predicted moment-rotation relationships generally agreed with the test results. Thus, the proposed plastic hinge model is applicable to the nonlinear analysis of short coupling beams to describe the shear strength degradation after flexural yielding. Design recommendations for the practical application of the proposed method were discussed. The proposed model revealed that the use of distributed longitudinal reinforcement and diagonal reinforcement is effective for high ductility.
10.14359/51734524
21-285
Subhan Ahmad, Pradeep Bhargava, and Minkwan Ju
Sixteen shear-critical reinforced concrete short beams (RCSB) with different percentages of tension reinforcement were loaded until failure at ambient and after 350, 550, and 750°C temperatures. Elevated temperatures resulted in a higher shear capacity loss in the beams with a lower tension reinforcement. Stiffness of the beams reduced, whereas midspan deflection corresponding to ultimate load increased after elevated temperatures. Load-shear crack width responses indicated a brittle failure in the beams up to a temperature of 350°C. Ductile failure was perceived in the specimens tested after 550 and 750°C. The strains in tension reinforcement corresponding to ultimate load decrease as the exposure temperature increases. Theoretical predictions provided reasonable estimates of shear capacities up to a temperature of 350°C; in contrast, shear capacities of beams exposed to over 550°C were found up to 46% higher. The experimental results were used to develop an equation for the computation of the shear capacity of RCSB after exposure to elevated temperatures.
10.14359/51734665
20-435
March 1, 2022
K. S. T. Chopperla, S. Smith, T. Drimalas, N. P. Vaddey, A. Bentivegna, K. E. Kurtis, M. D. A. Thomas, and J. H. Ideker
2
The American Concrete Institute (ACI) provides guides, specifications, and code documents related to concrete durability. The authors reviewed two code documents from ACI Committees 318 and 350, two guidance documents from ACI Committees 201 and 222, and a specification document from ACI Committee 350, and observed that several discrepancies exist in terms of providing uniform durability requirements for freezing and thawing and chemical sulfate attack of concrete, and allowable chloride limits for new construction. By analyzing existing concrete durability data from published literature, laboratory testing, and field exposure sites, recommendations on unified durability requirements and exposure class descriptions are made for potential adoption by ACI Committees 201, 222, 318, and 350.
10.14359/51734352
20-183
May 1, 2021
Ahmed E. Salama, Mohamed Hassan, and Brahim Benmokrane
118
3
This paper presents test results from an experimental program conducted to study the punching-shear response of reinforced concrete (RC) edge column-slab connections (ECS connections) reinforced with glass fiber-reinforced polymer bars (GFRP). Five full-scale ECS connections were tested under vertical shear force and unbalanced moment until failure. Four of the five connections were reinforced with GFRP bars as flexural reinforcement; one connection was reinforced with steel bars for comparison. All slabs measured 2500 x 1350 x 200 mm (98.4 x 53 x 7.9 in.) with a 300 mm (11.8 in.) square column stub protruding 700 mm above and below the slab surfaces. The test parameters were flexural-reinforcement type, concrete strength, and moment-to-shear force ratio (M/V). The test results revealed that all the connections failed by punching shear with no signs of concrete crushing. The high-strength concrete (HSC) directly enhanced the punching-shear capacity, load-deflection response, and initial stiffness of the connections. These connections also evidenced fewer and narrower cracks compared to their counterparts cast with normal-strength concrete (NSC). Increasing the M/V produced significant shear stresses, thereby reducing the vertical load capacity by 31% and 30% for the NSC and HSC connections, respectively. A simple design approach to predicate the punching-shear capacity of FRP-RC ECS connections is proposed. The proposed approach yielded good, yet conservative, predictions with respect to the available test data.
10.14359/51730525
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.