ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 45 Abstracts search results

Document: 

22-217

Date: 

April 1, 2024

Author(s):

Amin K. Akhnoukh and Mathew Campbell

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

The U.S. National Ocean Service estimates 95,741 miles (154,080 km) of shoreline in the United States, where 163 miles per year are hardened by bulkheads and riprap. These shoreline protection techniques are costly and require frequent maintenance. Different agencies are examining “nature-based” solutions that combine vegetation with traditional concrete. Digital construction, advanced manufacturing, and innovative cementitious composites have also been proposed as potential means to lower material use, cost, and environmental impact. This paper presents a novel advanced manufacturing technique using a reactive-diffusion morphological process, called “dry-forming,” to three-dimensionally (3-D) printed concrete structures of various shapes, sizes, and complexities with standard concrete mixtures. This technology has reduced 60% of material use, enhanced local habitats, and increased the resiliency of the shoreline to sea level rise. The widespread use of this technology would increase the resiliency of coastal communities, protect aquatic life, and protect waterfront public and private real estate investments.

DOI:

10.14359/51740264


Document: 

21-463

Date: 

January 1, 2023

Author(s):

Sean Monkman, Ryan Cialdella, and Jose Pacheco

Publication:

Materials Journal

Volume:

120

Issue:

1

Abstract:

An important part of improving the embodied carbon of the built environment is reducing carbon emissions associated with concrete. The long-term limitations around the availability of supplementary cementitious materials (SCMs) to replace portland cement have driven the search for additional innovative approaches. The beneficial use of carbon dioxide (CO2) in ready mixed concrete production has been developed and installed as retrofit technology with industrial users. An optimum dose of CO2 added to concrete as an admixture leads to the in-place formation of mineralized calcium carbonate (CaCO3) and can increase the concrete compressive strength. The improved performance can be leveraged to design concrete mixture proportions for a more efficient use of portland cement, along with the use of CO2 to reduce the carbon footprint of concrete. One producer has used the technology, starting in 2016, at over 50 plants. More than 3 million m3 of concrete have been shipped with an estimated net savings of 35,000 tonnes of CO2. The concrete produced with carbon dioxide is discussed in terms of the fresh and hardened performance, durability performance, and life cycle impacts.

DOI:

10.14359/51734732


Document: 

22-116

Date: 

January 1, 2023

Author(s):

Anderson S. H. Chu

Publication:

Materials Journal

Volume:

120

Issue:

1

Abstract:

Concrete mixture design is the foundation of cement and concrete research. Innovations in concrete materials could, should, and would inevitably be incorporated into new mixture designs. Thus, a rigorous method for concrete mixture design can better bridge the research community and the construction industry with high reliability and high fidelity. However, current methods for concrete mixture design vary a lot in the literature, thus compromising the accuracy and consistency in interpreting the properties of concrete subject to changes in its raw ingredients. Moreover, the extraneous variables in controlled experiments are not always controlled well. To solve this old but critical problem, this paper summarizes the prevalent concrete mixture design methods in the literature and in practice. By contrast, the volume-based mixture design method is superior to the mass ratio-based mixture design method in terms of simplicity, accuracy, and consistency. Further discussion on packing density measurement and water or slurry film thickness (SFT) as a basis of volume-based mixture design is elaborated. Mathematically, the hardened properties were linked to the particle packing behavior and fresh properties of concrete. This research contributes to a unified volume-based design method to bridge the research community and the construction industry. In the end, it is conducive to upgrading from concrete technology to science.

DOI:

10.14359/51737295


Document: 

21-157

Date: 

July 1, 2022

Author(s):

Junhao Chen, Yanlong Li, Lifeng Wen, Hanyu Guo, and Kangping Li

Publication:

Materials Journal

Volume:

119

Issue:

4

Abstract:

The objective of this paper is to investigate the microscopic pore characteristics and macroscopic mechanical properties of concrete under different curing conditions. Ultrasonic nondestructive testing technology was used to measure the ultrasonic sound velocity of specimens of different ages, and the compressive strength and splitting tensile strength were obtained through indoor mechanical performance tests. The pore-size distribution characteristics and internal microstructure were observed using nuclear magnetic resonance (NMR) technology and scanning electron microscopy (SEM) testing, respectively. The results revealed that, compared with standard curing conditions, the decrease of the curing temperature and humidity can result in the volume and proportion of macropores and microcracks being larger, which results in the deceleration of the ultrasonic wave speed inside the concrete and the decrease of the mechanical properties. Under the same curing condition, a lower water-binder ratio (w/b) enables the internal pore surface area of the material to increase, and the mechanical properties are improved. With the decrease of the curing temperature and relative humidity, the stress-strain curve appeared delayed in the initial compaction stage and presents more obvious brittleness characteristics in the failure stage. By fitting the relationship between the concrete strength and the porosity under different curing conditions, an extended model that can be applied to cement-based materials was obtained. Additionally, it was found that the porosity is negatively correlated with the ratio of the compressive strength to splitting tensile strength of the concrete.

DOI:

10.14359/51734683


Document: 

21-036

Date: 

March 1, 2022

Author(s):

Jiehang Zhou, Longyu Du, Jianzhong Lai, Qiang Wang, Saiyang Dong, and Yujie Yang

Publication:

Materials Journal

Volume:

119

Issue:

2

Abstract:

Three-dimensional (3-D) printed concrete is a new technology for civil engineering. In this paper, 3-D printed concrete was prepared for a study on static and dynamic properties. The best fluidity of the concrete was researched and the optimization mixture ratio for better mechanical performance was discussed. The mechanical performances of the concrete were tested and the anisotropy phenomenon in 3-D printed concrete was found. The computed tomography (CT) scanning and imaging progress methods were used to discuss the reason for the phenomenon. The penetration experiments were carried out to research the dynamic performance of the 3-D printed concrete. The results of the penetration tests were compared with the empirical formulas. The Young formula was improved according to the results.

DOI:

10.14359/51734353


12345...>>

Results Per Page