ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 3250 Abstracts search results
Document:
25-121
Date:
November 12, 2025
Author(s):
Amir Mofidi, Sara Mirzabagheri, Kourosh Nasrollahzadeh, Shahryar Rahnamayan
Publication:
Structural Journal
Abstract:
The ACI CODE-318-19 provisions for one-way shear strength (Vc) in reinforced concrete (RC) members were majorly modified for the first time since 1963. ACI CODE-318-19 equation addresses certain previously identified limitations of the well-known Vc= 0.17λ√fc′bwd equation for members without shear steel reinforcement, incorporating factors such as size effect and the influence of longitudinal reinforcement ratio. This study takes a multi-metric approach to evaluate the accuracy and safety of ACI CODE-318-19’s one-way shear relationship for RC members without stirrups. ACI CODE-318-19 predictions are compared against those of its predecessor and other state-of-the-art models, using a database of experimental results gathered by joint ACI-ASCE Committee 445 and DAfStb. This study shows that the ACI CODE-318-19 equation significantly improved accuracy and safety over the ACI CODE-318-14 provisions. One-way shear predictions of ACI CODE-318-19 for RC members without shear reinforcement are generally comparable to existing models, though certain aspects may benefit from continued development and refinement.
DOI:
10.14359/51749319
24-241
November 6, 2025
Jonathan Dirk, Samuel Ehikhuenmen, Sreekanta Das, and Bennett Banting
This study investigates the structural performance improvement when bond beams are included in stack bond walls. Nine 4.0 m x 2.4 m x 0.20 m masonry walls were tested under out-of-plane and axial loads. The walls were constructed in three configurations: running bond, stack bond without bond beams, and stack bond with bond beams, following TMS 402/602 standard. Results show similar failure patterns and crack formation between running bond and stack bond walls, but stack bond walls with bond beams exhibited distinct behavior. Stack bond walls with bond beams showed slightly higher out-of-plane flexural capacity compared to running bond walls, with a difference ranging from 4 to 5%. These findings provide valuable insights for evaluating the structural performance of concrete masonry walls with different bonding patterns. This study suggests a potential revision to the Canadian (CSA S304) masonry design standard, potentially lifting restrictions on stack bond masonry wall construction.
10.14359/51749302
24-413
Yail J. Kim and Thi Ha
This paper presents the behavior of anchorage zones, also known as end zones, with discrete reinforcing bars and continuous meshes. To examine the implications of various reinforcing schemes on the capacity, cracking, and failure of end zones, 50 block specimens are loaded, and their responses are analyzed. Test parameters include the types of reinforcing bar materials (steel and glass fiber-reinforced polymer, (GFRP)) and the configurations of the reinforcing bars and steel meshes (single and multiple placements). In terms of load-carrying capacity, the specimens embedded with the GFRP rebars outperform those with the steel reinforcing bars and meshes by 14.0%. The post-peak load drop of the blocks with the steel and GFRP reinforcing bars is analogous due to distributed axial stresses in the unreinforced concrete region, differing from the abrupt drop observed in the specimens with the steel meshes that intersect the concrete in orthogonal directions. While concrete splitting originates from local tension generated near the axial compression, the location of cracking is dominated by the path of stress trajectories related to the number of reinforcing bars, which is not recognized in the case of the meshed specimens. The pattern of the isostatic lines of compression clarifies the development of bursting forces that cause cracking in the concrete. A two-stage analytical model is formulated to predict the magnitude of bursting forces and determine the effects of several parameters on the response of the end zones. The applicability of existing design expressions is assessed, and the need for follow-up research is delineated.
10.14359/51749305
25-118
Mohamed Mostafa, Richard S. Henry, and Kenneth J. Elwood
Precast concrete hollow-core floor units have been shown to sustain cracking in their unreinforced webs near the end support during earthquakes. Post-cracking shear strength is essential to maintain gravity loads following earthquakes. This paper presents the results of an experimental program that examined the post-cracking shear capacity of twelve full-scale hollow-core floor units. Variables included different support seating lengths, shear span-to-depth ratios, and loading protocols. Results showed that cracking in the unreinforced webs of hollow-core floor units can reduce shear capacity by at least 60% relative to uncracked strength. Additionally, reduced support seating length markedly decreased post-cracking shear strength, with 30 mm seating providing no residual capacity, while 50 and 100 mm lengths retained approximately 50 and 100% of the uncracked section capacity, respectively. The findings from this study provide a basis to quantify the residual capacity of web-cracked hollow-core floor units, which can be used in post-earthquake structural assessments.
10.14359/51749308
24-479
October 30, 2025
Yunan Wan and Hongping Zhang
Materials Journal
To prepare the SiO2 aerogel gypsum-based lightweight thermal insulation wall materials with better water resistance, α-hemihydrate gypsum (HG) was used as the main cementitious material. By adding Portland cement (PC), fly ash (FA), and hydrated lime (HL), HG was modified. Using these materials, the HG-PC system and HG-PC-FA-HL system were constructed, respectively. The effects of inorganic admixture content on the performance of both systems were analyzed. Results show that the mechanical properties and water resistance are improved after adding a certain proportion of mineral admixtures to HG. The mechanical properties and water resistance of the HG-PC-FA-HL system are better than the HG-PC system. At the content of 9 wt% FA, 20 wt% PC, and 4 wt% HL, the 28-day strength reaches 41.07 MPa (5955 psi), the water absorption after soaking for 48 h is 12.7 %, and the softening coefficient is 0.72.
10.14359/51749294
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer