Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 411 Abstracts search results
Document:
23-161
Date:
September 1, 2024
Author(s):
In-Seok Yoon and Tatsuhiko Saeki
Publication:
Materials Journal
Volume:
121
Issue:
5
Abstract:
In this study, a chloride adsorption test was performed to depict the chemical evolution of pore solution for cement hydration. It was found that the amount of chloride adsorbed by the AFm phase and the calcium-silicate-hydrate (C-S-H) phase decreased with the increasing pH of the pore solution. The stability of Friedel’s salt tended to decrease with the increasing pH of the pore solution. Notably, in the C-S-H phase, the decrease in the amount of chloride adsorption resulting from an increase in the pH level was larger when the Ca/Si ratio was higher. Based on these works, multiple regression analysis was performed to examine the correlation between the chloride adsorption density of cement hydrates and the experimental variables involved, including the pH of the pore solution and the amount of chloride-ion penetration. The pH of the pore solution was predicted based on cement hydration and pore-chemistry theories, and these results were combined with the experimental results, considering the changing chemical characteristics of the pore solution during each temporal stage of cement hydration. The amount of chloride-ion adsorption in fly ash (FA) and granulated blast-furnace slag (GBFS) was larger than in ordinary portland cement (OPC) due to the decreased pH of the pore solution resulting from the consumption of calcium hydroxide.
DOI:
10.14359/51742037
21-220
August 1, 2024
Brian Giltner, Seamus Freyne, and Anthony J. Lamanna
4
The focus of this study is to determine the optimum length of micro (average diameter less than 0.3 mm) and macro (average diameter greater than or equal to 0.3 mm) hemp fibers subjected to tensile loading in a cement paste mixture. Optimizing the length of the fibers to carry tensile loading for concrete members is important to minimize waste of hemp material and to provide the best performance. This study evaluated three water-cement ratios (w/c): 0.66, 0.49, and 0.42 (fc′ = 17.2, 24.1, and 27.6 MPa [2500, 3500, and 4000 psi], respectively). Because of the high cost of cement, replacement of cement with fly ash was also part of the program to determine if the addition of fly ash would have a negative impact on the performance of the hemp fibers. The results show that hemp micro- and macrofibers bonded to the cement matrix and carry higher tensile loads at higher w/c. Statistical analysis (regression modeling) shows that the optimum length for hemp macrofibers is 30 and 20 mm (1.18 and 0.79 in.) for microfibers.
10.14359/51740822
23-188
July 10, 2024
Quanjun Shen, Ruishuang Jiang, Li Li, Shuai Liu, Baolin Guo
In this study, low-carbon ultra-high-performance concrete (UHPC) was designed by adding fly ash-based mineral admixtures (SD-FA). The improved Andreasen & Andersen model was used to obtain SD-FA, which was then used to replace part of UHPC cement, to achieve the effect of low-carbon emission reduction. The effects of the composition and dosage of cement-based materials, the water-cement ratio, the composition of sand, the steel fiber content, and the lime-sand ratio on the properties of UHPC were studied, and the design of the batches was optimized. On this basis, the performance changes were analyzed at the micro level. The results show that when the 1~3 grade fly ash content after screening treatment is quantitative, the densest stacking is theoretically reached. The SD-FA optimized design improves the bulk density of UHPC and realizes the dense microstructure of UHPC. Under the optimal mixing ratio, its processability is guaranteed and the mechanical properties are enhanced.
10.14359/51742038
23-096
May 1, 2024
Zoi G. Ralli and Stavroula J. Pantazopoulou
3
In light of the effort for decarbonization of the energy sector, it is believed that common geopolymer binding materials such as fly ash may eventually become scarce and new geological aluminosilicate materials should be explored as alternative binders in geopolymer concrete. A novel, tension-hardening geopolymer concrete (THGC) that incorporates high amounts of semi-reactive quarry wastes (metagabbro) as a precursor, and coarse quarry sand (granite) was developed in this study using geopolymer formulations. The material was optimized based on the particle packing theory and was characterized in terms of mechanical, physical, and durability properties (that is, compressive, tensile, and flexural resistance; Young’s modulus; Poisson’s ratio; absorption; drying shrinkage; abrasion; coefficient of thermal expansion; and chloride-ion penetration, sulfate, and salt-scaling resistance). The developed THGC, with an air-dry density of 1940 kg/m3 (121 lb/ft3), incorporates short steel fibers at a volume ratio of 2%, and is highly ductile in both uniaxial tension and compression (uniaxial tensile strain capacity of 0.6% at an 80% post-peak residual tensile strength). Using digital image correlation (DIC), multiple crack formation was observed in the strain-hardening phase of the tension response. In compression, the material maintained its integrity beyond the peak load, having attained 1.8% compressive strain at 80% postpeak residual strength, whereas upon further reduction to 50% residual strength, the sustained axial and lateral strains were 2.5% and 3.5%, respectively. The material exhibited low permeability to chloride ions and significant abrasion resistance due to the high contents of metagabbro powder and granite sand. The enhanced properties of the material, combined with the complete elimination of ordinary portland cement from the mixture, hold promise for the development of sustainable and resilient structural materials with low CO2 emissions, while also enabling the innovative disposal of wastes as active binding components.
10.14359/51740704
22-380
C. Jin, N. Jiang, H. Li, C. Liu, A. Cao, J. Wang, and X. Wen
The use of construction waste to prepare recycled micro powder can improve the use of construction waste resources and effectively reduce carbon emissions. In this paper, researchers used waste concrete processing micro powder to prepare foam concrete (FC) and quantitatively characterized the performance and pore structure of FC by scanning electron microscopy (SEM), pore and fissure image recognition and analysis system (PCAS), and mechanical property testing methods with different mixing ratios of micro powder. The results showed that the effect of single mixing of micro powder or fly ash is better than the composite mixing test, and the optimal proportion of compressive strength of single mixing of micro powder is higher than that of single mixing of fly ash. The optimum mixing ratio is 6:4 between cement and micro powder, and the best effect is achieved when the micro powder mixing amount is 40%. Single or double mixing can fill the pores between the foam and strengthen the performance of the substrate. The tests of single-mixed or compound-mixed micro powder showed that the fractal dimension decreased with the increase of porosity; when the fractal dimension of the specimen increased, the average shape factor became smaller, the compressive strength decreased, and the water absorption rate increased.
10.14359/51740703
Results Per Page 5 10 15 20 25 50 100