ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 563 Abstracts search results

Document: 

24-071

Date: 

November 22, 2024

Author(s):

Anthony Addai Boateng, Garrett Tatum, Natassia Brenkus

Publication:

Materials Journal

Abstract:

Pour-backs and overlays are utilized commonly in bridge elements and repairs; it is crucial to corrosion protection that the bond between grout and concrete in these regions is carefully constructed. The integrity of the bond is crucial to ensure a barrier against water, chloride ions, moisture, and contaminants; bond failure can compromise the durability of concrete structures' long-term performance. This study examines the influence of surface preparation methods on the bond durability and chloride permeability between concrete substrate and grouts, including both "non-shrink" cementitious and epoxy grouts. A microstructural analysis of scanning electron microscopic (SEM) images was conducted to characterize the porosity of specimen interfaces. Pull-off testing was performed to quantify tensile strength. Results show that a water-blasted surface preparation technique improved the tensile bond strength for cementitious grout interfaces and reduced porosity at the interface. In contrast, epoxy grout interfaces were less affected by surface preparation. The study establishes a relationship between chloride ion permeability, porosity, and bond strength. The findings highlight the importance of surface preparation in ensuring the durability of concrete-grout interfaces.

DOI:

10.14359/51744378


Document: 

23-236

Date: 

August 1, 2024

Author(s):

Tiago Canavarro Cavalcante, Romildo Dias Toledo Filho, and Oscar Aurelio Mendoza Reales

Publication:

Materials Journal

Volume:

121

Issue:

4

Abstract:

A high cement content is often found in concrete mixture designs to achieve the unique fresh-state behavior requirements of three dimensional (3-D) printable concrete (3DPC) to ensure rapid stiffening of an extruded layer without collapsing under the stress applied by the following layers. Some materials with high water absorption, such as recycled concrete aggregates, have been incorporated in concrete mixture designs to minimize environmental impact; nevertheless, the fine powder fraction that remains from the recycled aggregate processing still poses a challenge. In the case of 3DCP, few studies are available regarding mixture designs using recycled concrete powder (RCP) for 3-D printing. In this context, this study presents the use of RCP as a filler to produce a printable mixture with low cement content. An RCP with 50 μm average particle size was obtained as a by-product from recycled concrete aggregate production. Portland cement pastes were produced with 0, 10, 20, 30, 40, and 50% of cement mass replacement by RCP to evaluate its effects on the hydration reaction, rheology, and compressive strength. It was found that the studied RCP replacement was not detrimental for the hydration reaction of portland cement during the initial hours, and at the same time, it was capable of modifying the rheological parameters of the paste proportionally to the packing density of its solid fraction. The obtained results indicated the viability of 3DCP with up to 50% cement replacement by RCP. It was concluded that RCP presents good potential for decreasing the cement consumption of 3DPC, which in turn could decrease its associated environmental impact while providing a destination for a by-product from recycled concrete aggregate production.

DOI:

10.14359/51740778


Document: 

21-220

Date: 

August 1, 2024

Author(s):

Brian Giltner, Seamus Freyne, and Anthony J. Lamanna

Publication:

Materials Journal

Volume:

121

Issue:

4

Abstract:

The focus of this study is to determine the optimum length of micro (average diameter less than 0.3 mm) and macro (average diameter greater than or equal to 0.3 mm) hemp fibers subjected to tensile loading in a cement paste mixture. Optimizing the length of the fibers to carry tensile loading for concrete members is important to minimize waste of hemp material and to provide the best performance. This study evaluated three water-cement ratios (w/c): 0.66, 0.49, and 0.42 (fc′ = 17.2, 24.1, and 27.6 MPa [2500, 3500, and 4000 psi], respectively). Because of the high cost of cement, replacement of cement with fly ash was also part of the program to determine if the addition of fly ash would have a negative impact on the performance of the hemp fibers. The results show that hemp micro- and macrofibers bonded to the cement matrix and carry higher tensile loads at higher w/c. Statistical analysis (regression modeling) shows that the optimum length for hemp macrofibers is 30 and 20 mm (1.18 and 0.79 in.) for microfibers.

DOI:

10.14359/51740822


Document: 

23-188

Date: 

July 10, 2024

Author(s):

Quanjun Shen, Ruishuang Jiang, Li Li, Shuai Liu, Baolin Guo

Publication:

Materials Journal

Abstract:

In this study, low-carbon ultra-high-performance concrete (UHPC) was designed by adding fly ash-based mineral admixtures (SD-FA). The improved Andreasen & Andersen model was used to obtain SD-FA, which was then used to replace part of UHPC cement, to achieve the effect of low-carbon emission reduction. The effects of the composition and dosage of cement-based materials, the water-cement ratio, the composition of sand, the steel fiber content, and the lime-sand ratio on the properties of UHPC were studied, and the design of the batches was optimized. On this basis, the performance changes were analyzed at the micro level. The results show that when the 1~3 grade fly ash content after screening treatment is quantitative, the densest stacking is theoretically reached. The SD-FA optimized design improves the bulk density of UHPC and realizes the dense microstructure of UHPC. Under the optimal mixing ratio, its processability is guaranteed and the mechanical properties are enhanced.

DOI:

10.14359/51742038


Document: 

22-380

Date: 

May 1, 2024

Author(s):

C. Jin, N. Jiang, H. Li, C. Liu, A. Cao, J. Wang, and X. Wen

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

The use of construction waste to prepare recycled micro powder can improve the use of construction waste resources and effectively reduce carbon emissions. In this paper, researchers used waste concrete processing micro powder to prepare foam concrete (FC) and quantitatively characterized the performance and pore structure of FC by scanning electron microscopy (SEM), pore and fissure image recognition and analysis system (PCAS), and mechanical property testing methods with different mixing ratios of micro powder. The results showed that the effect of single mixing of micro powder or fly ash is better than the composite mixing test, and the optimal proportion of compressive strength of single mixing of micro powder is higher than that of single mixing of fly ash. The optimum mixing ratio is 6:4 between cement and micro powder, and the best effect is achieved when the micro powder mixing amount is 40%. Single or double mixing can fill the pores between the foam and strengthen the performance of the substrate. The tests of single-mixed or compound-mixed micro powder showed that the fractal dimension decreased with the increase of porosity; when the fractal dimension of the specimen increased, the average shape factor became smaller, the compressive strength decreased, and the water absorption rate increased.

DOI:

10.14359/51740703


12345...>>

Results Per Page