Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 258 Abstracts search results
Document:
23-188
Date:
July 10, 2024
Author(s):
Quanjun Shen, Ruishuang Jiang, Li Li, Shuai Liu, Baolin Guo
Publication:
Materials Journal
Abstract:
In this study, low-carbon ultra-high-performance concrete (UHPC) was designed by adding fly ash-based mineral admixtures (SD-FA). The improved Andreasen & Andersen model was used to obtain SD-FA, which was then used to replace part of UHPC cement, to achieve the effect of low-carbon emission reduction. The effects of the composition and dosage of cement-based materials, the water-cement ratio, the composition of sand, the steel fiber content, and the lime-sand ratio on the properties of UHPC were studied, and the design of the batches was optimized. On this basis, the performance changes were analyzed at the micro level. The results show that when the 1~3 grade fly ash content after screening treatment is quantitative, the densest stacking is theoretically reached. The SD-FA optimized design improves the bulk density of UHPC and realizes the dense microstructure of UHPC. Under the optimal mixing ratio, its processability is guaranteed and the mechanical properties are enhanced.
DOI:
10.14359/51742038
23-101
May 1, 2024
Le Teng, Alfred Addai-Nimoh, and Kamal H. Khayat
Volume:
121
Issue:
3
This study evaluates the potential to use shrinkage-reducing admixture (SRA) and pre-saturated lightweight sand (LWS) to shorten the external moist-curing requirement of ultra-high-performance concrete (UHPC), which is critical in some applications where continuous moist-curing is challenging. Key characteristics of UHPC prepared with and without SRA and LWS and under 3 days, 7 days, and continuous moist curing were investigated. Results indicate that the combined incorporation of 1% SRA and 17% LWS can shorten the required moist-curing duration because such a mixture under 3 days of moist curing exhibited low total shrinkage of 360 με and compressive strength of 135 MPa (19,580 psi) at 56 days, and flexural strength of 18 MPa (2610 psi) at 28 days. This mixture subjected to 3 days of moist curing had a similar hydration degree and 25% lower capillary porosity in paste compared to the Reference UHPC prepared without any SRA and LWS and under continuous moist curing. The incorporation of 17% LWS promoted cement hydration and silica fume pozzolanic reaction to a degree similar to extending the moist-curing duration from 3 to 28 days and offsetting the impact of SRA on reducing cement hydration. The lower capillary porosity in the paste compensated for the porosity induced by porous LWS to secure an acceptable level of total porosity of UHPC.
10.14359/51740566
23-055
Sangyoung Han, Thanachart Subgranon, Hung-Wen Chung, Kukjoo Kim, and Mang Tia
A comprehensive laboratory testing program, field-testing program, numerical analysis, and life-cycle cost analysis were conducted to evaluate the beneficial effects of incorporating shrinkage-reducing admixture (SRA), polymeric microfibers (PMFs), and optimized aggregate gradation (OAG) into internally cured concrete (ICC) mixtures for rigid pavement applications. Results from the laboratory program indicate that all the ICC mixtures outperformed the standard concrete (SC) mixture. All the ICC mixtures showed a decrease in drying shrinkage compared to the SC mixture. Based on the laboratory program, three ICC mixtures and one SC mixture were selected for the full-scale test and subjected to a heavy vehicle simulator for accelerated fatigue testing. Extensive testing and analysis have shown that ICC mixtures incorporating SRA, PMFs, and OAG can be beneficially used in pavement applications to achieve increased pavement life.
10.14359/51740564
22-011
September 1, 2023
Run-Sheng Lin and Xiao-Yong Wang
120
5
This study proposed using carbon dioxide (CO2) as an indirect admixture for calcined clay blended pastes. By injecting CO2 gas into limewater, solid nano-CaCO3 particles were synthesized and used to partially replace the binder at ratios of 2, 4, and 6%. Various tests and analyses were performed on the calcined clay blended pastes. After adding nano-CaCO3, the strength, ultrasonic pulse velocity, hydration heat, and electrical resistivity were improved; monocarboaluminate and hemicarboaluminate were formed; and CO2 emissions were lowered. The electrical resistivity was improved more significantly than the strength. The reduction ratio in CO2 emissions was higher than the replacement ratio of nano-CaCO3. In summary, based on the transformation of gaseous CO2 to solid nano-CaCO3 particles, the proposed technique shows a similar concept to limestone calcined clay cement (LC3) concrete and can overcome the limitations of carbonation curing.
10.14359/51738889
21-483
Nima Mohammadian Tabrizi, Davood Mostofinejad, and Mohammad Reza Eftekhar
This paper is aimed at investigating the effects of different fiber inclusion on the mechanical properties of ultra-high-performance concrete (UHPC) by adding mineral admixtures as cement replacement materials to reduce production costs and CO2 emissions of UHPC. Throughout this research, 21 mixture designs containing four cement substitution materials (silica fume, slag cement, limestone powder, and quartz powder) and three fibers (steel, synthetic macrofibers, and polypropylene) under wet and combined (autoclave, oven, and water) curing were developed. To investigate the mechanical properties in this research, a total of 336 specimens were cast to evaluate compressive strength, the modulus of rupture (MOR), and the toughness index. The findings revealed that at the combined curing, regarded as a new procedure, all levels of cement replacement recorded a compressive strength higher than 150 MPa (21.76 ksi). Furthermore, the mechanical properties of the mixture design containing microsilica and slag (up to 15%) were found to be higher than other cement substitutes. Also, it was shown that all levels of the fiber presented the MOR significantly close together, and samples made of synthetic macrofibers and steel fibers exhibited deflection-hardening behavior after cracking. The mixture design containing microsilica, slag, limestone powder, and quartzpowder, despite the significant replacement of cement (approximately 50%) by substitution materials, experienced a slight drop in strength. Therefore, the development of this mixture is optimal both economically and environmentally.
10.14359/51738888
Results Per Page 5 10 15 20 25 50 100